IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i12p2119-d1527470.html
   My bibliography  Save this article

The Effects of Tillage Systems and Cover Crops on Soil Quality and Soybean Yield

Author

Listed:
  • Qiliang Hunag

    (United Graduate School of Agriculture Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509, Japan)

  • Yingting Gong

    (Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China)

  • Peiran Li

    (State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PRC, Guangzhou 510655, China)

  • Ratih Kemala Dewi

    (College of Vocational Studies, IPB University, Jl Kumbang No 14, Cilibende, Bogor, West Java 16151, Indonesia
    College of Agriculture, Ibaraki University, 3-21-1 Ami, Ibaraki 300-0393, Japan)

  • Masakazu Komatsuzaki

    (College of Agriculture, Ibaraki University, 3-21-1 Ami, Ibaraki 300-0393, Japan)

Abstract

Implementing management practices that minimize environmental impact while maintaining high crop yields is essential to achieve sustainable agricultural production. This study conducted a field trial within a soybean system to evaluate the responses of crop yield, residue decomposition, soil organic carbon (SOC) stock, and soil total nitrogen (STN) stock to varying tillage [moldboard tillage (MP) vs. no-tillage (NT)] and cover crop [hairy vetch (Vicia villosa Roth, HV) vs. rye (Secale cereal, RY)] management practices. The results showed no significant difference in soybean economic yield between MP and NT. However, NT demonstrated a higher SOC stock (0–30 cm), exceeding MP by 4.0% in 2020 and 8.2% in 2021. STN stock (0–30 cm) under NT also surpassed that of MP by 3.3% in 2020 and 3.6% in 2021. No significant differences were observed in soybean yield, SOC stock, and STN stock between HV and RY. Compared to NT, MP accelerated the decomposition of cover crop residues. Moreover, the decomposition of RY was more difficult than that of HV. These findings suggest that NT enhances soil carbon and nitrogen sequestration without compromising yield, positioning it as a sustainable practice for soybean systems, particularly when integrated with RY cover crops.

Suggested Citation

  • Qiliang Hunag & Yingting Gong & Peiran Li & Ratih Kemala Dewi & Masakazu Komatsuzaki, 2024. "The Effects of Tillage Systems and Cover Crops on Soil Quality and Soybean Yield," Agriculture, MDPI, vol. 14(12), pages 1-14, November.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:12:p:2119-:d:1527470
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/12/2119/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/12/2119/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Qingwen & Liu, Dinghui & Cheng, Shanghong & Huang, Xinjun, 2016. "Combined effects of runoff and soil erodibility on available nitrogen losses from sloping farmland affected by agricultural practices," Agricultural Water Management, Elsevier, vol. 176(C), pages 1-8.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Wang & Xinliang Liu & Yantai Gan & Yong Li & Ying Zhao, 2023. "Conversion of Forest Hillslopes into Tea Fields Increases Soil Nutrient Losses through Surface Runoff," Land, MDPI, vol. 12(2), pages 1-14, February.
    2. Li, Hongying & Zhu, Ningyuan & Qiao, Jun & Tang, Jun, 2024. "Evaluating the long-term effects of best management practices on pollution reduction and soil quality improvement in sloping farmland of the Three Gorges Reservoir area," Agricultural Water Management, Elsevier, vol. 297(C).
    3. Mingjie Qian & Wenxiang Zhou & Shufei Wang & Yuting Li & Yingui Cao, 2022. "The Influence of Soil Erodibility and Saturated Hydraulic Conductivity on Soil Nutrients in the Pingshuo Opencast Coalmine, China," IJERPH, MDPI, vol. 19(8), pages 1-17, April.
    4. Wang, Wei & Wu, Xiaohong & Yin, Chunmei & Xie, Xiaoli, 2019. "Nutrition loss through surface runoff from slope lands and its implications for agricultural management," Agricultural Water Management, Elsevier, vol. 212(C), pages 226-231.
    5. Meijia Xiao & Qingwen Zhang & Liqin Qu & Hafiz Athar Hussain & Yuequn Dong & Li Zheng, 2019. "Spatiotemporal Changes and the Driving Forces of Sloping Farmland Areas in the Sichuan Region," Sustainability, MDPI, vol. 11(3), pages 1-16, February.
    6. Wang, Tian & Xiao, Wenfa & Huang, Zhilin & Zeng, Lixiong, 2022. "Interflow pattern govern nitrogen loss from tea orchard slopes in response to rainfall pattern in Three Gorges Reservoir Area," Agricultural Water Management, Elsevier, vol. 269(C).
    7. Zhu, Jie & Chen, Shanghong & Zhang, Qingwen & Mei, Xurong, 2023. "Multi-year vertical and life cycle impacts of C-N management on soil moisture regimes," Agricultural Water Management, Elsevier, vol. 290(C).
    8. Mengjing Guo & Tiegang Zhang & Jing Li & Zhanbin Li & Guoce Xu & Rui Yang, 2019. "Reducing Nitrogen and Phosphorus Losses from Different Crop Types in the Water Source Area of the Danjiang River, China," IJERPH, MDPI, vol. 16(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:12:p:2119-:d:1527470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.