IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v301y2024ics0378377424002889.html
   My bibliography  Save this article

Properties of biochars derived from different straw at 500℃ pyrolytic temperature: Implications for their use to improving acidic soil water retention

Author

Listed:
  • Huang, Chunshui
  • Chen, Yang
  • Jin, Lichuang
  • Yang, Binbin

Abstract

Climate change cause extreme weather effects with temperature increases and drops in humidity, such as drought and heatwaves, which will lead to more evaporation in arid and semi-arid lands. The application of biochar made from crop straw without burning to farmland can effectively improve the water retention capacity of soil. A testing program has been carried out in a climate simulation laboratory to study the effects of different straw biochars on the cracking and evaporation of soils due to drying. Biochar from wheat straw (WS), corn straw (CS) and rice straw (RS) is produced at a pyrolysis temperature of 500℃. Thermogravimetric analysis and elemental analysis are carried out to obtain the properties of the biochar. Five percent of WS, CS and RS biochar by weight is added to acidic soil. Digital camera and digital image processing technology are used to analyze the crack morphology of the samples during evaporation. The results indicate that the RS biochar has the highest ash content (32.5 %), CS biochar has the highest content of volatile solid (25.36 %) and WS biochar has the highest content of fixed carbon (55.38 %). Biochar can effectively improve the water retention capacity of soil. The final water contents of the WS, CS and RS biochar soil samples are 132.3 %, 101.0 %, and 20.7 % respectively higher than that of the soil without biochar. Moreover, biochar can effectively reduce the degree of soil cracking. The addition of WS, CS and RS biochar can reduce soil cracking by 9.21 %, 16.57 %, and 7.46 %, respectively. WS contains more total cellulose than CS and RS, so WS biochar is the best choice to improve soil water retention ability. Therefore, biochar technology helps to optimize soil water retention while avoiding environmental pollution from straw burning.

Suggested Citation

  • Huang, Chunshui & Chen, Yang & Jin, Lichuang & Yang, Binbin, 2024. "Properties of biochars derived from different straw at 500℃ pyrolytic temperature: Implications for their use to improving acidic soil water retention," Agricultural Water Management, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002889
    DOI: 10.1016/j.agwat.2024.108953
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424002889
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108953?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.