IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v301y2024ics0378377424002841.html
   My bibliography  Save this article

Achieving sustainable rice production through nitrogen-potassium harmony for enhanced economic and environmental gains

Author

Listed:
  • Deng, Jun
  • Liu, Ke
  • Xiong, Xin
  • Hussain, Tajamul
  • Huang, Liying
  • de Voil, Peter
  • Harrison, Matthew Tom
  • Tian, Xiaohai
  • Zhang, Yunbo

Abstract

In the quest for sustainable, high-yield crop production, achieving the optimal balance between nitrogen (N) and potassium (K) stands as a pivotal goal. We carried out a 3-year field experiment to evaluate the impacts of the combined application of three N rates (90, 120,180 kg N ha−1) and three K rates (120, 160, 210 kg K2O ha−1) on rice yield, fertilizer use efficiency, greenhouse gas (GHG) emissions, global warming potential (GWP), GHG intensity (GHGI), and net ecosystem economic benefits (NEEB) in rice paddy. Our results showed that increasing K under the same N treatment proves beneficial for yield gains (average increase of 4.8 %). Such beneficial effect is also reflected in different N treatments, evidenced by the comparable grain yields between N120 × K160 (9.1 t ha−1) and N180×K120 (9.2 t ha−1). Increasing K significantly enhanced N use efficiency (NUE) through the stimulation of NR, GS/GOGAT, and GDH enzyme activities. This enhancement, along with the strengthened radiation use efficiency (4.7 %), contributed to an overall improvement in grain yield. Compared with N180×K120, both rice varieties, under N120×K160 treatment, showed higher NUE with a 47.6 % increase in PFPN, 12.1 % in NHI, 7.6 % in NUEg, and 9.5 % in NUEb, respectively. Higher NUE also reduced GHGI and improved NEEB. Compared with N180 ×K120 treatment, the GWP and GHGI under N120×K160 treatment decreased by 32.7 % and 31.0 %, while the NEEB increased by $31 ha−1. The composite sustainability scores suggested that the N120×K160 treatment was generally more sustainable compared with other treatments. These findings underscore the significance of optimizing N and K application ratios in rice paddy cultivation, not only for maximizing yields and nutrient use efficiency but also for reducing greenhouse gas emissions and enhancing economic sustainability, ultimately promoting a more environmentally and economically responsible approach to rice farming.

Suggested Citation

  • Deng, Jun & Liu, Ke & Xiong, Xin & Hussain, Tajamul & Huang, Liying & de Voil, Peter & Harrison, Matthew Tom & Tian, Xiaohai & Zhang, Yunbo, 2024. "Achieving sustainable rice production through nitrogen-potassium harmony for enhanced economic and environmental gains," Agricultural Water Management, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002841
    DOI: 10.1016/j.agwat.2024.108949
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424002841
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108949?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.