IDEAS home Printed from https://ideas.repec.org/a/spr/agrhuv/v19y2002i3p173-187.html
   My bibliography  Save this article

Crop water requirements revisited: The human dimensions of irrigation science and crop water management with special reference to the FAO approach

Author

Listed:
  • Dirk Zoebl

Abstract

Halfway through the 20thcentury, a curious shift took place in theconcept and definition of the agronomic term“crop water requirements.” Where these cropneeds were originally seen as the amount ofwater required for obtaining a certain yieldlevel, in the second half of the 20thcentury, the term came to mean the water neededto reach the potential or maximum yield in acertain season and locality. Some of themultiple academic, economic, social, andgeopolitical aspects of this conceptual shiftare addressed here. The crucial role of theproduction ecologist Cees de Wit in formulatingthis paradigmatic shift in the 1950s isdiscussed. It is seen how the incipient concernfor an expected global scarcity of waterresources has contributed to a trend back tothe conservative view of crop water control ofde Wit. The development over the years ofengineering and agricultural science conceptsconcerning irrigation and crop water control ispresented as an evolution from practicalhusbandry to specialized applied science;from an empirical, ecological approach to amainly physical/mathematical discipline. Inthe section ``The scientific heritage of Occamand Bacon,'' it is argued that this developmentregarding irrigation is part of a general trendin agricultural (and other) sciences andtechnologies over the last 150 years, althoughtendencies to return to a more holisticapproach have, at times, occurred. The current mainstream concepts and methodsin the art and science of crop water control,far from being objective and value-free, oftenact as ``a siren song'' for decision-makersresponsible for daily irrigation practice andregional or global water resource management.The seductive ``tune'' of maximum yields,concurrently the highest crop water use, drownsout the more modest aim of making anefficient use of the available waterresources. The latter's allure might,however, become the morecompelling as a greater scarcity ofphysical water resources becomes moreimportant than scarcity of land and labor. Copyright Kluwer Academic Publishers 2002

Suggested Citation

  • Dirk Zoebl, 2002. "Crop water requirements revisited: The human dimensions of irrigation science and crop water management with special reference to the FAO approach," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 19(3), pages 173-187, September.
  • Handle: RePEc:spr:agrhuv:v:19:y:2002:i:3:p:173-187
    DOI: 10.1023/A:1019909704144
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1019909704144
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1019909704144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julian I. Schroeder & June M. Kwak & Gethyn J. Allen, 2001. "Guard cell abscisic acid signalling and engineering drought hardiness in plants," Nature, Nature, vol. 410(6826), pages 327-330, March.
    2. Seckler, D., 1996. "The new era of water resources management: from \dry\ to \wet\ water savings," IWMI Research Reports H018206, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zoebl, Dirk, 2006. "Is water productivity a useful concept in agricultural water management?," Agricultural Water Management, Elsevier, vol. 84(3), pages 265-273, August.
    2. Lankford, Bruce A., 2004. "Resource-centred thinking in river basins; should we revoke the crop water requirement approach to irrigation planning?," Agricultural Water Management, Elsevier, vol. 68(1), pages 33-46, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    2. Jinxia Wang & K. K. Klein & Henning Bjornlund & Lijuan Zhang & Wencui Zhang, 2015. "Changing to more efficient irrigation technologies in southern Alberta (Canada): an empirical analysis," Water International, Taylor & Francis Journals, vol. 40(7), pages 1040-1058, November.
    3. Brar, S.K. & Mahal, S.S. & Brar, A.S. & Vashist, K.K. & Sharma, Neerja & Buttar, G.S., 2012. "Transplanting time and seedling age affect water productivity, rice yield and quality in north-west India," Agricultural Water Management, Elsevier, vol. 115(C), pages 217-222.
    4. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    5. Yan, Nana & Wu, Bingfang & Perry, Chris & Zeng, Hongwei, 2015. "Assessing potential water savings in agriculture on the Hai Basin plain, China," Agricultural Water Management, Elsevier, vol. 154(C), pages 11-19.
    6. Burton, M. A. & Kivumbi, D. & El-Askari, K., 1999. "Opportunities and constraints to improving irrigation water management: Foci for research," Agricultural Water Management, Elsevier, vol. 40(1), pages 37-44, March.
    7. Ghahroodi, E. Mokari & Noory, H. & Liaghat, A.M., 2015. "Performance evaluation study and hydrologic and productive analysis of irrigation systems at the Qazvin irrigation network (Iran)," Agricultural Water Management, Elsevier, vol. 148(C), pages 189-195.
    8. de Fraiture, Charlotte & Perry, C. J., 2007. "Why is agricultural water demand unresponsive at low price ranges?," IWMI Books, Reports H040602, International Water Management Institute.
    9. Ahmad, M.D. & Turral, H. & Nazeer, A., 2009. "Diagnosing irrigation performance and water productivity through satellite remote sensing and secondary data in a large irrigation system of Pakistan," Agricultural Water Management, Elsevier, vol. 96(4), pages 551-564, April.
    10. Stephens, William & Hess, Tim, 1999. "Systems approaches to water management research," Agricultural Water Management, Elsevier, vol. 40(1), pages 3-13, March.
    11. Skaggs, Rhonda K., 2000. "Drip Irrigation In The Desert: Adoption, Implications, And Obstacles," 2000 Annual Meeting, June 29-July 1, 2000, Vancouver, British Columbia 36412, Western Agricultural Economics Association.
    12. María Blanco & Benjamin Van Doorslaer & Wolfgang Britz & Heinz-Peter Witzke, 2012. "Exploring the feasibility of integrating water issues into the CAPRI model," JRC Research Reports JRC77058, Joint Research Centre.
    13. Kumar, M. Dinesh & van Dam, J. C., 2009. "Improving water productivity in agriculture in India: beyond \u2018more crop per drop\u2019," IWMI Books, Reports H042639, International Water Management Institute.
    14. Mark W. Rosegrant & Ruth S. Meinzen‐Dick, 1996. "Water Resources in the Asia‐Pacific Region: Managing Scarcity," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 10(2), pages 32-53, November.
    15. Lankford, Bruce, 2012. "Fictions, fractions, factorials and fractures; on the framing of irrigation efficiency," Agricultural Water Management, Elsevier, vol. 108(C), pages 27-38.
    16. de Fraiture, Charlotte & Perry, C. J., 2007. "Why is agricultural water demand unresponsive at low price ranges?," Book Chapters,, International Water Management Institute.
    17. Svendsen, M., 2001. "Basin management in a mature closed basin: the case of California's Central Valley," Conference Papers h029125, International Water Management Institute.
    18. van Halsema, Gerardo E. & Vincent, Linden, 2012. "Efficiency and productivity terms for water management: A matter of contextual relativism versus general absolutism," Agricultural Water Management, Elsevier, vol. 108(C), pages 9-15.
    19. Kumar, M. Dinesh & van Dam, J. C., 2008. "Improving water productivity in agriculture in developing economies: in search of new avenues," IWMI Conference Proceedings 245276, International Water Management Institute.
    20. Molden, David & Oweis, T. Y. & Pasquale, S. & Kijne, Jacob W. & Hanjra, M. A. & Bindraban, P. S. & Bouman, Bas A. M. & Cook, S. & Erenstein, O. & Farahani, H. & Hachum, A. & Hoogeveen, J. & Mahoo, Hen, 2007. "Pathways for increasing agricultural water productivity," Book Chapters,, International Water Management Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:agrhuv:v:19:y:2002:i:3:p:173-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.