IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v301y2024ics0378377424002804.html
   My bibliography  Save this article

Optimizing irrigation and N fertigation regimes achieved high yield and water productivity and low N leaching in a maize field in the North China Plain

Author

Listed:
  • Ning, Dongfeng
  • Chen, Haiqing
  • Qin, Anzhen
  • Gao, Yang
  • Zhang, Jiyang
  • Duan, Aiwang
  • Wang, Xingpeng
  • Liu, Zhandong

Abstract

Over-input of nitrogen (N) fertilizer coupled with flood irrigation resulted in low N and water productivity and serious NO3--N leaching in maize fields in the North China Plain (NCP). Drip-fertigation can enhance water-N use efficiency by precisely regulating water and N fertilizer application. In this study, a three-year drip-fertigation experiment on maize was carried out during the 2018–2020 growing seasons with three irrigation levels, i.e. 50 (W1, 100 %), 40 (W2, 80 %), and 30 mm (W3, 60 %), and five N levels, i.e. 0 (N0), 90 (N1), 180 (N2), 270 (N3), and 360 (N4) kg ha−1 were designed to investigate the responses of soil water consumption, NO3--N distribution, grain yield (GY), N uptake (UN), and water-N productivity to different irrigation and N application regimes. The results demonstrated that 80 % deficit irrigation (W2) obtained comparable GY to sufficient irrigation (W1), but significantly increased water productivity (WP) by 7.2 % compared with W1. Soil NO3--N contents in the 0–100 cm soil layers increased as the N application rate increased, but decreased with the increase of irrigation level. When the N application rate exceeded 180 kg N ha−1, soil NO3--N contents in the 60–100 cm soil layers were greatly increased. With the increasing N application rate, GY increased first and then tended to be stabilized when the N application rate reached 180 kg ha−1, UN showed an increased trend, while N agronomic efficiency (AEN) showed a decreased trend, the N recovery efficiency (REN) increased firstly and then decreased. When water consumption ranged from 374 to 388 mm and N application rate from 186 to 257 kg ha−1, respectively, GY and WP obtained 95 maximum values and AEN got 70 % maximum value, simultaneously. In conclusion, the regime of N application rate at about 180 kg ha−1 coupled with 40 mm irrigation level (per event) is recommended for drip-fertigated maize fields in the NCP.

Suggested Citation

  • Ning, Dongfeng & Chen, Haiqing & Qin, Anzhen & Gao, Yang & Zhang, Jiyang & Duan, Aiwang & Wang, Xingpeng & Liu, Zhandong, 2024. "Optimizing irrigation and N fertigation regimes achieved high yield and water productivity and low N leaching in a maize field in the North China Plain," Agricultural Water Management, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002804
    DOI: 10.1016/j.agwat.2024.108945
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424002804
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108945?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.