IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v283y2023ics0378377423001919.html
   My bibliography  Save this article

Optimal cooperative application solutions of irrigation and nitrogen fertilization for high crop yield and friendly environment in the semi-arid region of North China

Author

Listed:
  • Gao, Riping
  • Pan, Zhihua
  • Zhang, Jun
  • Chen, Xiao
  • Qi, Yinglong
  • Zhang, Ziyuan
  • Chen, Shaoqing
  • Jiang, Kang
  • Ma, Shangqian
  • Wang, Jialin
  • Huang, Zhefan
  • Cai, Linlin
  • Wu, Yao
  • Guo, Ning
  • Xu, Xinran

Abstract

Optimizing irrigation and nitrogen (N) fertilization cooperative application to coordinate the balance between agricultural production and ecological environment is a vital challenge for sustainable agricultural production. Here, a three-year field experiment was conducted from 2018 to 2020 in the semi-arid region of north China to investigate the effects of different irrigation amounts (W1, 50% ETc, ETc is the crop evapotranspiration; W2, 75% ETc; W3, 100% ETc; W4, 125% ETc) and nitrogen fertilization rates (F1, 75 kg·ha−1, F2, 150 kg·ha−1, F3, 225 kg·ha−1, F4, 300 kg·ha−1) on growth, yield, water and fertilizer use efficiency, and soil N residue of spring wheat by drip fertigation, and explore the optimal combination of irrigation amount and N fertilization rate based on a multi-objective optimization method. The results showed that leaf area index (LAI), dry matter accumulation, yield, water use efficiency (WUE) and economic return of spring wheat increased first and then decreased with increasing irrigation at the same level of N fertilization. These parameters peaked at W3, with W1 performed poorly and low irrigation amount was detrimental to the function of fertilizer. At the same level of irrigation, LAI, dry matter accumulation, yield and economic return all demonstrated significant diminishing return effects with increasing N fertilization, whereas nitrogen partial factor productivity (NPFP) reduced with increasing N fertilization. Furthermore, with the simultaneous increase of irrigation and N fertilization, the accumulation of soil nitrate nitrogen (NO3-N) decreased in the 0 − 40 cm soil layer and increased in the 60 − 100 cm soil layer. The partial least squares path model (PLS-PM) revealed that irrigation had a direct positive effect on spring wheat yield rather than N fertilization, and irrigation had a direct negative effect on soil N residue. Based on the multi-objective optimization model established by multiple regression analysis and the elitist non-dominated sorting genetic algorithm (NSGA-II), the irrigation amount of 337.3–354.9 mm combined with the N fertilization rate of 181.2–198.6 kg·ha−1 could obtain the optimal comprehensive benefits of wheat yield, economic return, water and fertilizer utilization efficiency and environmental impact. This study can provide an important scientific basis for the management and optimization of irrigation and fertilization for spring wheat in semi-arid region of China and other similar regions around the world.

Suggested Citation

  • Gao, Riping & Pan, Zhihua & Zhang, Jun & Chen, Xiao & Qi, Yinglong & Zhang, Ziyuan & Chen, Shaoqing & Jiang, Kang & Ma, Shangqian & Wang, Jialin & Huang, Zhefan & Cai, Linlin & Wu, Yao & Guo, Ning & X, 2023. "Optimal cooperative application solutions of irrigation and nitrogen fertilization for high crop yield and friendly environment in the semi-arid region of North China," Agricultural Water Management, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:agiwat:v:283:y:2023:i:c:s0378377423001919
    DOI: 10.1016/j.agwat.2023.108326
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423001919
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108326?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gheysari, Mahdi & Sadeghi, Sayed-Hossein & Loescher, Henry W. & Amiri, Samia & Zareian, Mohammad Javad & Majidi, Mohammad M. & Asgarinia, Parvaneh & Payero, Jose O., 2017. "Comparison of deficit irrigation management strategies on root, plant growth and biomass productivity of silage maize," Agricultural Water Management, Elsevier, vol. 182(C), pages 126-138.
    2. Ballester, Carlos & Hornbuckle, John & Brinkhoff, James & Quayle, Wendy C., 2021. "Effects of three frequencies of irrigation and nitrogen rates on lint yield, nitrogen use efficiency and fibre quality of cotton under furrow irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    3. Li, Zhou & Zhang, Qingping & Wei, Wanrong & Cui, Song & Tang, Wei & Li, Yuan, 2020. "Determining effects of water and nitrogen inputs on wheat yield and water productivity and nitrogen use efficiency in China: A quantitative synthesis," Agricultural Water Management, Elsevier, vol. 242(C).
    4. Zhang, Xudong & Li, Zhimin & Siddique, Kadambot H.M. & Shayakhmetova, Altyn & Jia, Zhikuan & Han, Qingfang, 2020. "Increasing maize production and preventing water deficits in semi-arid areas: A study matching fertilization with regional precipitation under mulch planting," Agricultural Water Management, Elsevier, vol. 241(C).
    5. Ali, Shahzad & Xu, Yueyue & Ahmad, Irshad & Jia, Qianmin & Ma, Xiangcheng & Sohail, Amir & Manzoor, & Arif, Muhammad & Ren, Xiaolong & Cai, Tie & Zhang, Jiahua & Jia, Zhikuan, 2019. "The ridge-furrow system combined with supplemental irrigation strategies to improves radiation use efficiency and winter wheat productivity in semi-arid regions of China," Agricultural Water Management, Elsevier, vol. 213(C), pages 76-86.
    6. Tang, Jianzhao & Xiao, Dengpan & Wang, Jing & Fang, Quanxiao & Zhang, Jun & Bai, Huizi, 2021. "Optimizing water and nitrogen managements for potato production in the agro-pastoral ecotone in North China," Agricultural Water Management, Elsevier, vol. 253(C).
    7. David R. Kanter & Olivia Chodos & Olivia Nordland & Mallory Rutigliano & Wilfried Winiwarter, 2020. "Gaps and opportunities in nitrogen pollution policies around the world," Nature Sustainability, Nature, vol. 3(11), pages 956-963, November.
    8. Vashisht, B.B. & Nigon, T. & Mulla, D.J. & Rosen, C. & Xu, H. & Twine, T. & Jalota, S.K., 2015. "Adaptation of water and nitrogen management to future climates for sustaining potato yield in Minnesota: Field and simulation study," Agricultural Water Management, Elsevier, vol. 152(C), pages 198-206.
    9. Xiao, Chao & Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Li, Yi & Sun, Shikun & Pulatov, Alim, 2021. "Optimizing irrigation amount and fertilization rate of drip-fertigated spring maize in northwest China based on multi-level fuzzy comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 257(C).
    10. Li, Yue & Huang, Guanhua & Chen, Zhijun & Xiong, Yuwu & Huang, Quanzhong & Xu, Xu & Huo, Zailin, 2022. "Effects of irrigation and fertilization on grain yield, water and nitrogen dynamics and their use efficiency of spring wheat farmland in an arid agricultural watershed of Northwest China," Agricultural Water Management, Elsevier, vol. 260(C).
    11. Muhammad Zain & Zhuanyun Si & Sen Li & Yang Gao & Faisal Mehmood & Shafeeq-Ur Rahman & Abdoul Kader Mounkaila Hamani & Aiwang Duan, 2021. "The Coupled Effects of Irrigation Scheduling and Nitrogen Fertilization Mode on Growth, Yield and Water Use Efficiency in Drip-Irrigated Winter Wheat," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    12. Shi, Xinrui & Batchelor, William D. & Liang, Hao & Li, Sien & Li, Baoguo & Hu, Kelin, 2020. "Determining optimal water and nitrogen management under different initial soil mineral nitrogen levels in northwest China based on a model approach," Agricultural Water Management, Elsevier, vol. 234(C).
    13. Ma, Shou-tian & Wang, Tong-chao & Ma, Shou-Chen, 2022. "Effects of drip irrigation on root activity pattern, root-sourced signal characteristics and yield stability of winter wheat," Agricultural Water Management, Elsevier, vol. 271(C).
    14. Liu, Yanqi & Lin, Yifan & Huo, Zailin & Zhang, Chenglong & Wang, Chaozi & Xue, Jingyuan & Huang, Guanhua, 2022. "Spatio-temporal variation of irrigation water requirements for wheat and maize in the Yellow River Basin, China, 1974–2017," Agricultural Water Management, Elsevier, vol. 262(C).
    15. Yan, Fulai & Zhang, Fucang & Fan, Xingke & Fan, Junliang & Wang, Ying & Zou, Haiyang & Wang, Haidong & Li, Guodong, 2021. "Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of drip-fertigated spring maize in northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    16. Liu, Caixia & Rubæk, Gitte H. & Liu, Fulai & Andersen, Mathias N., 2015. "Effect of partial root zone drying and deficit irrigation on nitrogen and phosphorus uptake in potato," Agricultural Water Management, Elsevier, vol. 159(C), pages 66-76.
    17. Li, Haoru & Mei, Xurong & Wang, Jiandong & Huang, Feng & Hao, Weiping & Li, Baoguo, 2021. "Drip fertigation significantly increased crop yield, water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices: A meta-analysis in China," Agricultural Water Management, Elsevier, vol. 244(C).
    18. Fan, Jiangchuan & Lu, Xianju & Gu, Shenghao & Guo, Xinyu, 2020. "Improving nutrient and water use efficiencies using water-drip irrigation and fertilization technology in Northeast China," Agricultural Water Management, Elsevier, vol. 241(C).
    19. Xinping Chen & Zhenling Cui & Mingsheng Fan & Peter Vitousek & Ming Zhao & Wenqi Ma & Zhenlin Wang & Weijian Zhang & Xiaoyuan Yan & Jianchang Yang & Xiping Deng & Qiang Gao & Qiang Zhang & Shiwei Guo , 2014. "Producing more grain with lower environmental costs," Nature, Nature, vol. 514(7523), pages 486-489, October.
    20. Liu, Xiao & Li, Mo & Guo, Ping & Zhang, Zhongxue, 2019. "Optimization of water and fertilizer coupling system based on rice grain quality," Agricultural Water Management, Elsevier, vol. 221(C), pages 34-46.
    21. Behera, S.K. & Panda, R.K., 2009. "Integrated management of irrigation water and fertilizers for wheat crop using field experiments and simulation modeling," Agricultural Water Management, Elsevier, vol. 96(11), pages 1532-1540, November.
    22. Thompson, R.B. & Martinez-Gaitan, C. & Gallardo, M. & Gimenez, C. & Fernandez, M.D., 2007. "Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey," Agricultural Water Management, Elsevier, vol. 89(3), pages 261-274, May.
    23. Wang, Guangshuai & Liang, Yueping & Zhang, Qian & Jha, Shiva K. & Gao, Yang & Shen, Xiaojun & Sun, Jingsheng & Duan, Aiwang, 2016. "Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 163(C), pages 403-407.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Yuanhong & Ding, Guijie & Quan, Wenxuan & Zhao, Xizhou & Tao, Qinghong, 2024. "Coupling optimization of water-fertilizer for coordinated development of the environment and growth of Pinus massoniana seedlings," Agricultural Water Management, Elsevier, vol. 300(C).
    2. Hamani, Abdoul Kader Mounkaila & Abubakar, Sunusi Amin & Si, Zhuanyun & Kama, Rakhwe & Gao, Yang & Duan, Aiwang, 2023. "Responses of grain yield and water-nitrogen dynamic of drip-irrigated winter wheat (Triticum aestivum L.) to different nitrogen fertigation and water regimes in the North China Plain," Agricultural Water Management, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Cheng & Feng, Hao & Luo, Xiaoqi & Li, Yue & Wang, Naijiang & Wu, Wenjie & Zhang, Tibin & Dong, Qin’ge & Siddique, Kadambot H.M., 2022. "Limited irrigation and fertilization in sand-layered soil increases nitrogen use efficiency and economic benefits under film mulched ridge-furrow irrigation in arid areas," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Fu, Yuanhong & Ding, Guijie & Quan, Wenxuan & Zhao, Xizhou & Tao, Qinghong, 2024. "Coupling optimization of water-fertilizer for coordinated development of the environment and growth of Pinus massoniana seedlings," Agricultural Water Management, Elsevier, vol. 300(C).
    3. Wei, Qi & Wei, Qi & Xu, Junzeng & Liu, Yuzhou & Wang, Dong & Chen, Shengyu & Qian, Wenhao & He, Min & Chen, Peng & Zhou, Xuanying & Qi, Zhiming, 2024. "Nitrogen losses from soil as affected by water and fertilizer management under drip irrigation: Development, hotspots and future perspectives," Agricultural Water Management, Elsevier, vol. 296(C).
    4. Xiao, Chao & Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Li, Yi & Sun, Shikun & Pulatov, Alim, 2021. "Optimizing irrigation amount and fertilization rate of drip-fertigated spring maize in northwest China based on multi-level fuzzy comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 257(C).
    5. Ning, Dongfeng & Chen, Haiqing & Qin, Anzhen & Gao, Yang & Zhang, Jiyang & Duan, Aiwang & Wang, Xingpeng & Liu, Zhandong, 2024. "Optimizing irrigation and N fertigation regimes achieved high yield and water productivity and low N leaching in a maize field in the North China Plain," Agricultural Water Management, Elsevier, vol. 301(C).
    6. Guo, Ru & Qian, Rui & Du, Luning & Sun, Weili & Wang, Jinjin & Cai, Tie & Zhang, Peng & Jia, Zhikuan & Ren, Xiaolong & Chen, Xiaoli, 2024. "Straw-derived biochar optimizes water consumption, shoot and root characteristics to improve water productivity of maize under reduced nitrogen," Agricultural Water Management, Elsevier, vol. 294(C).
    7. Chen, Lijun & Liu, Jingze & Guo, Fukang & Jing, Song & Chu, Boyu & Qu, Yuncan & Li, Wen & Zhang, Jiyu, 2024. "The impact of drip irrigation and phosphorus fertilizer on enhancing dimorphic seed production of Lespedeza potaninii in Northwest China," Agricultural Water Management, Elsevier, vol. 299(C).
    8. Li, Haoru & Li, Xiaoli & Mei, Xurong & Nangia, Vinay & Guo, Rui & Hao, Weiping & Wang, Jiandong, 2023. "An alternative water-fertilizer-saving management practice for wheat-maize cropping system in the North China Plain: Based on a 4-year field study," Agricultural Water Management, Elsevier, vol. 276(C).
    9. Yi-Xuan Lu & Si-Ting Wang & Guan-Xin Yao & Jing Xu, 2023. "Green Total Factor Efficiency in Vegetable Production: A Comprehensive Ecological Analysis of China’s Practices," Agriculture, MDPI, vol. 13(10), pages 1-25, October.
    10. Li, Jungai & Liu, Hongbin & Wang, Hongyuan & Luo, Jiafa & Zhang, Xuejun & Liu, Zhaohui & Zhang, Yitao & Zhai, Limei & Lei, Qiuliang & Ren, Tianzhi & Li, Yan & Bashir, Muhammad Amjad, 2018. "Managing irrigation and fertilization for the sustainable cultivation of greenhouse vegetables," Agricultural Water Management, Elsevier, vol. 210(C), pages 354-363.
    11. Diaz-Gonzalez, Freddy A. & Vuelvas, Jose. & Vallejo, Victoria E. & Patino, D., 2023. "Fertilization rate optimization model for potato crops to maximize yield while reducing polluting nitrogen emissions," Ecological Modelling, Elsevier, vol. 485(C).
    12. Ahmad, Irshad & Yan, Zhengang & Kamran, Muhammad & Ikram, Khushnuma & Ghani, Muhammad Usman & Hou, Fujiang, 2022. "Nitrogen management and supplemental irrigation affected greenhouse gas emissions, yield and nutritional quality of fodder maize in an arid region," Agricultural Water Management, Elsevier, vol. 269(C).
    13. Lu, Junsheng & Hu, Tiantian & Geng, Chenming & Cui, Xiaolu & Fan, Junliang & Zhang, Fucang, 2021. "Response of yield, yield components and water-nitrogen use efficiency of winter wheat to different drip fertigation regimes in Northwest China," Agricultural Water Management, Elsevier, vol. 255(C).
    14. Liu, Yu & Li, Shilei & Liu, Yanxin & Shen, Hongzheng & Huang, Tingting & Ma, Xiaoyi, 2023. "Optimization of a nitrogen fertilizer application scheme for spring maize in full-film double-ridge furrow in Longzhong, China," Agricultural Water Management, Elsevier, vol. 290(C).
    15. Xiao, Guangmin & Zhao, Zichao & Liang, Long & Meng, Fanqiao & Wu, Wenliang & Guo, Yanbin, 2019. "Improving nitrogen and water use efficiency in a wheat-maize rotation system in the North China Plain using optimized farming practices," Agricultural Water Management, Elsevier, vol. 212(C), pages 172-180.
    16. Xiulu Sun & Yizan Li & Marius Heinen & Henk Ritzema & Petra Hellegers & Jos van Dam, 2022. "Fertigation Strategies to Improve Water and Nitrogen Use Efficiency in Surface Irrigation System in the North China Plain," Agriculture, MDPI, vol. 13(1), pages 1-23, December.
    17. Huang, Zhenyu & Zhang, Junxiao & Ren, Dongyang & Hu, Jiaqi & Xia, Guimin & Pan, Baozhu, 2022. "Modeling and assessing water and nitrogen use and crop growth of peanut in semi-arid areas of Northeast China," Agricultural Water Management, Elsevier, vol. 267(C).
    18. Wang, Han & Xiang, Youzhen & Zhang, Fucang & Tang, Zijun & Guo, Jinjin & Zhang, Xueyan & Hou, Xianghao & Wang, Haidong & Cheng, Minghui & Li, Zhijun, 2022. "Responses of yield, quality and water-nitrogen use efficiency of greenhouse sweet pepper to different drip fertigation regimes in Northwest China," Agricultural Water Management, Elsevier, vol. 260(C).
    19. Wang, Yingxin & Guo, Qin & Xu, Yirui & Zhang, Peng & Cai, Tie & Jia, Zhikuan, 2022. "Optimizing urea deep placement to rainfall can maximize crop water-nitrogen productivity and decrease nitrate leaching in winter wheat," Agricultural Water Management, Elsevier, vol. 274(C).
    20. Wu, Menglong & Xiong, Jiajie & Li, Ruoyu & Dong, Aihong & Lv, Chang & Sun, Dan & Abdelghany, Ahmed Elsayed & Zhang, Qian & Wang, Yaqiong & Siddique, Kadambot H.M. & Niu, Wenquan, 2024. "Precision forecasting of fertilizer components’ concentrations in mixed variable-rate fertigation through machine learning," Agricultural Water Management, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:283:y:2023:i:c:s0378377423001919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.