IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v301y2024ics0378377424002671.html
   My bibliography  Save this article

Understanding of maize root responses to changes in water status induced by plastic film mulching cultivation on the Loess Plateau, China

Author

Listed:
  • Song, Qilong
  • Zhang, Fangfang
  • Li, Xin
  • Yue, Shanchao
  • Luo, Zhuzhu
  • Li, Shiqing

Abstract

Water stress is the most important factor limiting crop production in arid and semiarid regions. Cultivating crops using a plastic film mulch can significantly increase crop yields by optimizing soil hydrothermal conditions in semiarid agroecosystems. Therefore, clarifying root adaptability to plastic film mulch cultivation is crucial when attempting to produce stable and high maize yields. A two-year experiment was conducted to investigate the effects of two treatments, no mulching (NM) and plastic film mulching (FM), on the yield, water productivity (WP), and root morphology of spring maize on the Loess Plateau. The results showed that the FM yield (14.31–15.02 t ha–1) significantly increased by 18.6–29.7 % compared to NM (11.03–12.66 t ha–1). The FM treatment also significantly increased dry matter (51.0–61.6 %), leaf area (19.7–25.7 %), and WP (28.8–46.3 %), but decreased ET (8.6–12.8 %). In addition, soil water storage in the FM surface soil layer significantly increased compared to that of NM. Film mulching also produced more robust roots and promoted the convergence of roots towards the surface of the soil, whereas NM roots tended to grow downwards to obtain water from the lower soil layers. The regression analyses indicated that root length (R2 = 0.725, P < 0.01) and biomass (R2 = 0.736, P < 0.01) were positively correlated with grain yield. The results suggested that maize adapts to changes in root morphological behavior under FM. These changes contribute to soil water and nutrient capture and shoot development, which subsequently support the high yields produced under plastic film mulching. Therefore, film mulching is a promising strategy for improving yield and WP and for optimizing root morphology in dryland agriculture.

Suggested Citation

  • Song, Qilong & Zhang, Fangfang & Li, Xin & Yue, Shanchao & Luo, Zhuzhu & Li, Shiqing, 2024. "Understanding of maize root responses to changes in water status induced by plastic film mulching cultivation on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002671
    DOI: 10.1016/j.agwat.2024.108932
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424002671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108932?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.