Effects of Different Mulching Materials on the Grain Yield and Water Use Efficiency of Maize in the North China Plain
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Li, Siyi & Li, Yi & Lin, Haixia & Feng, Hao & Dyck, Miles, 2018. "Effects of different mulching technologies on evapotranspiration and summer maize growth," Agricultural Water Management, Elsevier, vol. 201(C), pages 309-318.
- Jia, Qiong & Shi, Haibin & Li, Ruiping & Miao, Qingfeng & Feng, Yayang & Wang, Ning & Li, Jingwei, 2021. "Evaporation of maize crop under mulch film and soil covered drip irrigation: field assessment and modelling on West Liaohe Plain, China," Agricultural Water Management, Elsevier, vol. 253(C).
- Li, Cheng & Luo, Xiaoqi & Wang, Naijiang & Wu, Wenjie & Li, Yue & Quan, Hao & Zhang, Tibin & Ding, Dianyuan & Dong, Qin’ge & Feng, Hao, 2022. "Transparent plastic film combined with deficit irrigation improves hydrothermal status of the soil-crop system and spring maize growth in arid areas," Agricultural Water Management, Elsevier, vol. 265(C).
- Wang, Hongli & Zhang, Xucheng & Zhang, Guoping & Yu, Xianfeng & Hou, Huizhi & Fang, Yanjie & Ma, Yifan & Lei, Kangning, 2022. "Mulching coordinated the seasonal soil hydrothermal relationships and promoted maize productivity in a semi-arid rainfed area on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 263(C).
- Zhang, Yanqun & Wang, Jiandong & Gong, Shihong & Xu, Di & Mo, Yan, 2019. "Straw mulching enhanced the photosynthetic capacity of field maize by increasing the leaf N use efficiency," Agricultural Water Management, Elsevier, vol. 218(C), pages 60-67.
- Yan, Zhenxing & Gao, Chao & Ren, Yujie & Zong, Rui & Ma, Yuzhao & Li, Quanqi, 2017. "Effects of pre-sowing irrigation and straw mulching on the grain yield and water use efficiency of summer maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 186(C), pages 21-28.
- Zhao, Hong & Xiong, You-Cai & Li, Feng-Min & Wang, Run-Yuan & Qiang, Sheng-Cai & Yao, Tao-Feng & Mo, Fei, 2012. "Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem," Agricultural Water Management, Elsevier, vol. 104(C), pages 68-78.
- Bu, Ling-duo & Liu, Jian-liang & Zhu, Lin & Luo, Sha-sha & Chen, Xin-ping & Li, Shi-qing & Lee Hill, Robert & Zhao, Ying, 2013. "The effects of mulching on maize growth, yield and water use in a semi-arid region," Agricultural Water Management, Elsevier, vol. 123(C), pages 71-78.
- Bi, Yinli & Qiu, Lang & Zhakypbek, Yryszhan & Jiang, Bin & Cai, Yun & Sun, Huan, 2018. "Combination of plastic film mulching and AMF inoculation promotes maize growth, yield and water use efficiency in the semiarid region of Northwest China," Agricultural Water Management, Elsevier, vol. 201(C), pages 278-286.
- Li, Rong & Hou, Xianqing & Jia, Zhikuan & Han, Qingfang & Ren, Xiaolong & Yang, Baoping, 2013. "Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 116(C), pages 101-109.
- Wang, Yajun & Xie, Zhongkui & Malhi, Sukhdev S. & Vera, Cecil L. & Zhang, Yubao & Wang, Jinniu, 2009. "Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 96(3), pages 374-382, March.
- Zhang, Peng & Wei, Ting & Han, Qingfang & Ren, Xiaolong & Jia, Zhikuan, 2020. "Effects of different film mulching methods on soil water productivity and maize yield in a semiarid area of China," Agricultural Water Management, Elsevier, vol. 241(C).
- Gu, Xiaobo & Cai, Huanjie & Fang, Heng & Chen, Pengpeng & Li, Yupeng & Li, Yuannong, 2021. "Soil hydro-thermal characteristics, maize yield and water use efficiency as affected by different biodegradable film mulching patterns in a rain-fed semi-arid area of China," Agricultural Water Management, Elsevier, vol. 245(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yisheng Lou & Xu Zhang & Shiyu Zhang & Na Li & Yidong Zhao & Wei Bai & Zhanxiang Sun & Zhe Zhang, 2024. "Effects of Straw Input on the Yield and Water-Use Efficiency of Spring Maize in Film-Mulched Farmland," Agriculture, MDPI, vol. 14(10), pages 1-18, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Siyi & Li, Yi & Lin, Haixia & Feng, Hao & Dyck, Miles, 2018. "Effects of different mulching technologies on evapotranspiration and summer maize growth," Agricultural Water Management, Elsevier, vol. 201(C), pages 309-318.
- Li, Yue & Chen, Hao & Feng, Hao & Dong, Qin’ge & Wu, Wenjie & Zou, Yufeng & Chau, Henry Wai & Siddique, Kadambot H.M., 2020. "Influence of straw incorporation on soil water utilization and summer maize productivity: A five-year field study on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 233(C).
- Dong, Qin’ge & Yang, Yuchen & Yu, Kun & Feng, Hao, 2018. "Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 201(C), pages 133-143.
- He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
- Dong, Baodi & Liu, Mengyu & Jiang, Jingwei & Shi, Changhai & Wang, Xiaoming & Qiao, Yunzhou & Liu, Yueyan & Zhao, Zhihai & li, Dongxiao & Si, Fuyan, 2014. "Growth, grain yield, and water use efficiency of rain-fed spring hybrid millet (Setaria italica) in plastic-mulched and unmulched fields," Agricultural Water Management, Elsevier, vol. 143(C), pages 93-101.
- Yin, Tao & Yao, Zhipeng & Yan, Changrong & Liu, Qi & Ding, Xiaodong & He, Wenqing, 2023. "Maize yield reduction is more strongly related to soil moisture fluctuation than soil temperature change under biodegradable film vs plastic film mulching in a semi-arid region of northern China," Agricultural Water Management, Elsevier, vol. 287(C).
- Xuemei Lan & Shouxi Chai & Jeffrey A. Coulter & Hongbo Cheng & Lei Chang & Caixia Huang & Rui Li & Yuwei Chai & Yawei Li & Jiantao Ma & Li Li, 2020. "Maize Straw Strip Mulching as a Replacement for Plastic Film Mulching in Maize Production in a Semiarid Region," Sustainability, MDPI, vol. 12(15), pages 1-26, August.
- Gao, Haihe & Yan, Changrong & Liu, Qin & Li, Zhen & Yang, Xiao & Qi, Ruimin, 2019. "Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 225(C).
- Zhang, Runze & Lei, Tong & Wang, Yunfeng & Xu, Jiaxing & Zhang, Panxin & Han, Yan & Hu, Changlu & Yang, Xueyun & Sadras, Victor & Zhang, Shulan, 2022. "Responses of yield and water use efficiency to the interaction between water supply and plastic film mulch in winter wheat-summer fallow system," Agricultural Water Management, Elsevier, vol. 266(C).
- Ding, Dianyuan & Zhao, Ying & Feng, Hao & Hill, Robert Lee & Chu, Xiaosheng & Zhang, Tibin & He, Jianqiang, 2018. "Soil water utilization with plastic mulching for a winter wheat-summer maize rotation system on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 201(C), pages 246-257.
- Wang, Huan & Fan, Jun & Fu, Wei & Du, Mengge & Zhou, Gu & Zhou, Mingxing & Hao, Mingde & Shao, Ming'an, 2022. "Good harvests of winter wheat from stored soil water and improved temperature during fallow period by plastic film mulching," Agricultural Water Management, Elsevier, vol. 274(C).
- Ding, Jinli & Wu, Jicheng & Ding, Dianyuan & Yang, Yonghui & Gao, Cuimin & Hu, Wei, 2021. "Effects of tillage and straw mulching on the crop productivity and hydrothermal resource utilization in a winter wheat-summer maize rotation system," Agricultural Water Management, Elsevier, vol. 254(C).
- Zhang, Dengkui & Wang, Qi & Zhou, Xujiao & Liu, Qinglin & Wang, Xiaoyun & Zhao, Xiaole & Zhao, Wucheng & He, Chenggang & Li, Xiaoling & Li, Guang & Chen, Jin, 2020. "Suitable furrow mulching material for maize and sorghum production with ridge-furrow rainwater harvesting in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 228(C).
- Wang, Weiyan & Guo, Wenjia & Dong, Jiangyao & Zhang, Houping & Liao, Yuncheng & Wen, Xiaoxia, 2024. "Ridge-furrow planting patterns with film mulching improve water use efficiency by enhancing arbuscular mycorrhizal fungi in the rhizosphere and endophyte of summer maize," Agricultural Water Management, Elsevier, vol. 296(C).
- Liu, Pei & Wang, Hongli & Li, Linchao & Liu, Xiaoli & Qian, Rui & Wang, Jinjin & Yan, Xiaoqun & Cai, Tie & Zhang, Peng & Jia, Zhikuan & Ren, Xiaolong & Chen, Xiaoli, 2020. "Ridge-furrow mulching system regulates hydrothermal conditions to promote maize yield and efficient water use in rainfed farming area," Agricultural Water Management, Elsevier, vol. 232(C).
- Feng, Yu & Gong, Daozhi & Mei, Xurong & Hao, Weiping & Tang, Dahua & Cui, Ningbo, 2017. "Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 191(C), pages 193-206.
- Chen, Rui & Wang, Zhenhua & Dhital, Yam Prasad & Zhang, Xinyu, 2022. "A comparative evaluation of soil preferential flow of mulched drip irrigation cotton field in Xinjiang based on dyed image variability versus fractal characteristic parameter," Agricultural Water Management, Elsevier, vol. 269(C).
- Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
- Razmavaran, Mohammad Hadi & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2024. "Water footprint and production of rain-fed saffron under different planting methods with ridge plastic mulch and pre-flowering irrigation in a semi-arid region," Agricultural Water Management, Elsevier, vol. 291(C).
- Zheng, Jing & Fan, Junliang & Zhang, Fucang & Zhuang, Qianlai, 2021. "Evapotranspiration partitioning and water productivity of rainfed maize under contrasting mulching conditions in Northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
More about this item
Keywords
plastic film mulching; straw mulching; soil water content; soil temperature; spring maize; summer maize; grain yield; water-use efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1112-:d:874019. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.