IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v299y2024ics0378377424002397.html
   My bibliography  Save this article

Improved understanding of how irrigated area expansion enhances precipitation recycling by land–atmosphere coupling

Author

Listed:
  • Wang, Xuanxuan
  • Cheng, Yongming
  • Liu, Liu
  • Niu, Qiankun
  • Huang, Guanhua

Abstract

Large-scale agricultural activities can intensify atmospheric–terrestrial interactions, of which precipitation recycling plays a critical role. During 1982–2018, irrigated area has dramatically expanded in Northwest China (NWC). In this study, a regional precipitation recycling model—the Brubaker model was used to investigate the precipitation recycling ratio (PRR) and recycled precipitation (RP). Evapotranspiration (ET) estimated by the atmospheric–terrestrial water balance method (A–T) was employed to investigate precipitation recycling. Statistically, there was a turning point in 2002 for the rate in irrigated area increase, from 0.07 × 106 ha/year before 2002–0.217 × 106 ha/year after 2002. There were significant shifts in ET, PRR, and RP in NWC, using the turning point of irrigated area expansion as the line of demarcation. The contribution of the change in irrigated area to PRR increased from 18.3% (1982–2002) to 22.9% (2003–2018) in NWC. Prior to 2002, enhanced RP offset the increased ET by 72.9%. After 2002, the positive effect of irrigated area expansion on precipitation recycling disappeared in NWC. Due to the different climate and irrigation practices at the province level, the variations in irrigated area and their contributions to PRR were examined in three provinces, Xinjiang, Gansu, and Shaanxi. Results based on the Brubaker model and Budyko framework indicate that in Xinjiang and Gansu, the contribution of the irrigated area change after the turning point to PRR were 24.5% and -95.6%, respectively, and there is no potential for continued expansion of irrigated area. In Shaanxi, however, there is potential for continued expansion of irrigated area. The methodology for quantifying the impact of irrigated area change on PRR provides reliable references for the sustainable use of cultivated land and the protection of agricultural water resources.

Suggested Citation

  • Wang, Xuanxuan & Cheng, Yongming & Liu, Liu & Niu, Qiankun & Huang, Guanhua, 2024. "Improved understanding of how irrigated area expansion enhances precipitation recycling by land–atmosphere coupling," Agricultural Water Management, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:agiwat:v:299:y:2024:i:c:s0378377424002397
    DOI: 10.1016/j.agwat.2024.108904
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424002397
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan Yu & Michael Notaro & Fuyao Wang & Jiafu Mao & Xiaoying Shi & Yaxing Wei, 2017. "Observed positive vegetation-rainfall feedbacks in the Sahel dominated by a moisture recycling mechanism," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    2. Delphine Clara Zemp & Carl-Friedrich Schleussner & Henrique M. J. Barbosa & Marina Hirota & Vincent Montade & Gilvan Sampaio & Arie Staal & Lan Wang-Erlandsson & Anja Rammig, 2017. "Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    3. Iago Algarra & Raquel Nieto & Alexandre M. Ramos & Jorge Eiras-Barca & Ricardo M. Trigo & Luis Gimeno, 2020. "Significant increase of global anomalous moisture uptake feeding landfalling Atmospheric Rivers," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    4. Sanaz Moghim, 2020. "Assessment of Water Storage Changes Using GRACE and GLDAS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 685-697, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rau, E-Ping & Fischer, Fabian & Joetzjer, Émilie & Maréchaux, Isabelle & Sun, I Fang & Chave, Jérôme, 2022. "Transferability of an individual- and trait-based forest dynamics model: A test case across the tropics," Ecological Modelling, Elsevier, vol. 463(C).
    2. Zunguang Zhou & Baohong Lu & Zhengfang Jiang & Yirui Zhao, 2024. "Quantifying Water Storage Changes and Groundwater Drought in the Huaihe River Basin of China Based on GRACE Data," Sustainability, MDPI, vol. 16(19), pages 1-18, September.
    3. Erhao Meng & Shengzhi Huang & Qiang Huang & Linyin Cheng & Wei Fang, 2021. "The Reconstruction and Extension of Terrestrial Water Storage Based on a Combined Prediction Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5291-5306, December.
    4. Václav Šípek & Michal Jenicek & Jan Hnilica & Nikol Zelíková, 2021. "Catchment Storage and its Influence on Summer Low Flows in Central European Mountainous Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2829-2843, July.
    5. Behnam Khorrami & Shoaib Ali & Orhan Gündüz, 2023. "Investigating the Local-scale Fluctuations of Groundwater Storage by Using Downscaled GRACE/GRACE-FO JPL Mascon Product Based on Machine Learning (ML) Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3439-3456, July.
    6. José C. Fernández-Alvarez & Albenis Pérez-Alarcón & Jorge Eiras-Barca & Stefan Rahimi & Raquel Nieto & Luis Gimeno, 2023. "Projected changes in atmospheric moisture transport contributions associated with climate warming in the North Atlantic," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. M.J. Mace & Claire L. Fyson & Michiel Schaeffer & William L. Hare, 2021. "Large‐Scale Carbon Dioxide Removal to Meet the 1.5°C Limit: Key Governance Gaps, Challenges and Priority Responses," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 67-81, April.
    8. Paim, Maria-Augusta & Dalmarco, Arthur R. & Yang, Chung-Han & Salas, Pablo & Lindner, Sören & Mercure, Jean-Francois & de Andrade Guerra, José Baltazar Salgueirinho Osório & Derani, Cristiane & Bruce , 2019. "Evaluating regulatory strategies for mitigating hydrological risk in Brazil through diversification of its electricity mix," Energy Policy, Elsevier, vol. 128(C), pages 393-401.
    9. Flach, Rafaela & Abrahão, Gabriel & Bryant, Benjamin & Scarabello, Marluce & Soterroni, Aline C. & Ramos, Fernando M. & Valin, Hugo & Obersteiner, Michael & Cohn, Avery S., 2021. "Conserving the Cerrado and Amazon biomes of Brazil protects the soy economy from damaging warming," World Development, Elsevier, vol. 146(C).
    10. Bert Wuyts & Alan R Champneys & Nicolas Verschueren & Jo I House, 2019. "Tropical tree cover in a heterogeneous environment: A reaction-diffusion model," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-16, June.
    11. Araujo, Rafael, 2024. "The value of tropical forests to hydropower," Energy Economics, Elsevier, vol. 129(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:299:y:2024:i:c:s0378377424002397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.