IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v299y2024ics0378377424002270.html
   My bibliography  Save this article

Systematic review of the detection of subsurface drainage systems in agricultural fields using remote sensing systems

Author

Listed:
  • Carlsen, Ask Holm
  • Fensholt, Rasmus
  • Looms, Majken Caroline
  • Gominski, Dimitri
  • Stisen, Simon
  • Jepsen, Martin Rudbeck

Abstract

Artificial subsurface drainage systems (DS) exert significant impacts on agricultural production, local hydrology, and the transportation of agro-chemicals to aquatic environments. With increasing focus on technology driven farm management and environmental concerns, airborne and spaceborne remote sensing (RS) studies for DS detection are increasing. However, a systematic review detailing the methodologies for DS detection using RS systems is currently lacking. This study presents a comprehensive review of 19 remote sensing subsurface drainage system mapping studies, encompassing a diverse array of imagery, acquisition periods, and detection methods, with the aim of identifying best practices for detecting subsurface DS. These studies aim either to delineate the actual DS tile networks or to identify areas or fields where DS systems are likely installed. While DS detection has traditionally relied on visual interpretation by human analysts, the recent advent of machine learning and deep learning techniques in RS image analysis has enabled their application in DS detection, facilitating coverage of much larger areas. Our findings highlight the advantages of timing image acquisition in relation to rainfall and field conditions. As well as analyzing different methods for automatic detection and delineation of DS. However, disparities in or the absence of standardized evaluation methods pose challenges for robust comparisons of methodologies and datasets. Nonetheless, the integration of machine learning and deep learning holds promise for large-scale and automated DS detection. Based on our findings, we present recommendations for future research directions in the field of RS-based DS detection, emphasizing the necessity for standardized evaluation frameworks and ongoing advancements in analytical techniques.

Suggested Citation

  • Carlsen, Ask Holm & Fensholt, Rasmus & Looms, Majken Caroline & Gominski, Dimitri & Stisen, Simon & Jepsen, Martin Rudbeck, 2024. "Systematic review of the detection of subsurface drainage systems in agricultural fields using remote sensing systems," Agricultural Water Management, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:agiwat:v:299:y:2024:i:c:s0378377424002270
    DOI: 10.1016/j.agwat.2024.108892
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424002270
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108892?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:299:y:2024:i:c:s0378377424002270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.