IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v229y2020ics0378377419302975.html
   My bibliography  Save this article

Field trials to detect drainage pipe networks using thermal and RGB data from unmanned aircraft

Author

Listed:
  • Kratt, C.B.
  • Woo, D.K.
  • Johnson, K.N.
  • Haagsma, M.
  • Kumar, P.
  • Selker, J.
  • Tyler, S.

Abstract

The use of drainage pipe is documented as far back as 200 B. C. and continues to be used in poorly drained agricultural regions throughout the world. While good for crop production, the eco-hydrologic impacts of this modification have been shown to adversely affect natural drainage networks. Identifying the exact location of drainage pipe networks is essential to developing groundwater and surface water models. The geometry of drainage pipe networks installed decades ago has often been lost with time or was never well documented in the first place. Previous work has recognized that drainage pipes can be observed for certain soil types in visible spectrum (RGB) remote sensing data due to changes in soil albedo. In this work, small Unmanned Aerial Systems (sUAS) were used to collect high resolution RGB and thermal data to map subsurface drainage pipe. Within less than 96 h of a small (< 1.3 cm) rain event, a total of approximately 60 ha of sUAS thermal and RGB data were acquired at two different locations in the IML-CZO in Illinois. The thermal imagery showed limited evidence of thermal contrast related to the drainage pipe. If the data were acquired immediately after a rain event it is more likely a temperature contrast would have been detected due to lower soil moisture proximal to the drainage pipe network. The RGB data, however, elucidated the drainage pipe entirely at one site and elucidated traces of the drainage pipe at the other site. These results illustrate the importance of the timing of sUAS data collection with respect to the precipitation event. Ongoing related work focusing on laboratory and numerical experiments to better quantify feedbacks between albedo, soil moisture, and heat transfer will help predict the optimal timing of data collection for applications such as drainage pipe mapping.

Suggested Citation

  • Kratt, C.B. & Woo, D.K. & Johnson, K.N. & Haagsma, M. & Kumar, P. & Selker, J. & Tyler, S., 2020. "Field trials to detect drainage pipe networks using thermal and RGB data from unmanned aircraft," Agricultural Water Management, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:agiwat:v:229:y:2020:i:c:s0378377419302975
    DOI: 10.1016/j.agwat.2019.105895
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419302975
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105895?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barry Allred & DeBonne Wishart & Luis Martinez & Harry Schomberg & Steven Mirsky & George Meyers & John Elliott & Christine Charyton, 2018. "Delineation of Agricultural Drainage Pipe Patterns Using Ground Penetrating Radar Integrated with a Real-Time Kinematic Global Navigation Satellite System," Agriculture, MDPI, vol. 8(11), pages 1-14, October.
    2. Naz, B.S. & Ale, S. & Bowling, L.C., 2009. "Detecting subsurface drainage systems and estimating drain spacing in intensively managed agricultural landscapes," Agricultural Water Management, Elsevier, vol. 96(4), pages 627-637, April.
    3. Woo, Dong Kook & Song, Homin & Kumar, Praveen, 2019. "Mapping subsurface tile drainage systems with thermal images," Agricultural Water Management, Elsevier, vol. 218(C), pages 94-101.
    4. Allred, Barry & Eash, Neal & Freeland, Robert & Martinez, Luis & Wishart, DeBonne, 2018. "Effective and efficient agricultural drainage pipe mapping with UAS thermal infrared imagery: A case study," Agricultural Water Management, Elsevier, vol. 197(C), pages 132-137.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Allred, Barry & Martinez, Luis & Khanal, Sami & Sawyer, Audrey H. & Rouse, Greg, 2022. "Subsurface drainage outlet detection in ditches and streams with UAV thermal infrared imagery: Preliminary research," Agricultural Water Management, Elsevier, vol. 271(C).
    2. Allred, Barry & Martinez, Luis & Fessehazion, Melake K. & Rouse, Greg & Koganti, Triven & Freeland, Robert & Eash, Neal & Wishart, DeBonne & Featheringill, Robert, 2021. "Time of day impact on mapping agricultural subsurface drainage systems with UAV thermal infrared imagery," Agricultural Water Management, Elsevier, vol. 256(C).
    3. Song, Homin & Woo, Dong Kook & Yan, Qina, 2021. "Detecting subsurface drainage pipes using a fully convolutional network with optical images," Agricultural Water Management, Elsevier, vol. 249(C).
    4. Carlsen, Ask Holm & Fensholt, Rasmus & Looms, Majken Caroline & Gominski, Dimitri & Stisen, Simon & Jepsen, Martin Rudbeck, 2024. "Systematic review of the detection of subsurface drainage systems in agricultural fields using remote sensing systems," Agricultural Water Management, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allred, Barry & Martinez, Luis & Fessehazion, Melake K. & Rouse, Greg & Koganti, Triven & Freeland, Robert & Eash, Neal & Wishart, DeBonne & Featheringill, Robert, 2021. "Time of day impact on mapping agricultural subsurface drainage systems with UAV thermal infrared imagery," Agricultural Water Management, Elsevier, vol. 256(C).
    2. Carlsen, Ask Holm & Fensholt, Rasmus & Looms, Majken Caroline & Gominski, Dimitri & Stisen, Simon & Jepsen, Martin Rudbeck, 2024. "Systematic review of the detection of subsurface drainage systems in agricultural fields using remote sensing systems," Agricultural Water Management, Elsevier, vol. 299(C).
    3. Allred, Barry & Martinez, Luis & Fessehazion, Melake K. & Rouse, Greg & Williamson, Tanja N. & Wishart, DeBonne & Koganti, Triven & Freeland, Robert & Eash, Neal & Batschelet, Adam & Featheringill, Ro, 2020. "Overall results and key findings on the use of UAV visible-color, multispectral, and thermal infrared imagery to map agricultural drainage pipes," Agricultural Water Management, Elsevier, vol. 232(C).
    4. Woo, Dong Kook & Song, Homin & Kumar, Praveen, 2019. "Mapping subsurface tile drainage systems with thermal images," Agricultural Water Management, Elsevier, vol. 218(C), pages 94-101.
    5. Allred, Barry & Martinez, Luis & Khanal, Sami & Sawyer, Audrey H. & Rouse, Greg, 2022. "Subsurface drainage outlet detection in ditches and streams with UAV thermal infrared imagery: Preliminary research," Agricultural Water Management, Elsevier, vol. 271(C).
    6. Deuss, Kirstin Ella & Almond, Peter C. & Carrick, Sam & Kees, Lawrence John, 2023. "Identification, mapping, and characterisation of a mature artificial mole channel network using ground-penetrating radar," Agricultural Water Management, Elsevier, vol. 288(C).
    7. Song, Homin & Woo, Dong Kook & Yan, Qina, 2021. "Detecting subsurface drainage pipes using a fully convolutional network with optical images," Agricultural Water Management, Elsevier, vol. 249(C).
    8. Allred, Barry & Eash, Neal & Freeland, Robert & Martinez, Luis & Wishart, DeBonne, 2018. "Effective and efficient agricultural drainage pipe mapping with UAS thermal infrared imagery: A case study," Agricultural Water Management, Elsevier, vol. 197(C), pages 132-137.
    9. Puppala, Harish & Peddinti, Pranav R.T. & Tamvada, Jagannadha Pawan & Ahuja, Jaya & Kim, Byungmin, 2023. "Barriers to the adoption of new technologies in rural areas: The case of unmanned aerial vehicles for precision agriculture in India," Technology in Society, Elsevier, vol. 74(C).
    10. Woo, Dong Kook & Ji, Junghu & Song, Homin, 2023. "Subsurface drainage pipe detection using an ensemble learning approach and aerial images," Agricultural Water Management, Elsevier, vol. 287(C).
    11. Ale, S. & Bowling, L.C. & Owens, P.R. & Brouder, S.M. & Frankenberger, J.R., 2012. "Development and application of a distributed modeling approach to assess the watershed-scale impact of drainage water management," Agricultural Water Management, Elsevier, vol. 107(C), pages 23-33.
    12. Barry Allred & DeBonne Wishart & Luis Martinez & Harry Schomberg & Steven Mirsky & George Meyers & John Elliott & Christine Charyton, 2018. "Delineation of Agricultural Drainage Pipe Patterns Using Ground Penetrating Radar Integrated with a Real-Time Kinematic Global Navigation Satellite System," Agriculture, MDPI, vol. 8(11), pages 1-14, October.
    13. Schomberg, Harry H. & White, Kathryn E. & Thompson, Alondra I. & Bagley, Gwendolyn A. & Burke, Allen & Garst, Grace & Bybee-Finley, K. Ann & Mirsky, Steven B., 2023. "Interseeded cover crop mixtures influence soil water storage during the corn phase of corn-soybean-wheat no-till cropping systems," Agricultural Water Management, Elsevier, vol. 278(C).
    14. Tlapáková Lenka, 2017. "Development of drainage system in the Czech landscape – identification and functionality assessment by means of remote sensing," European Countryside, Sciendo, vol. 9(1), pages 77-98, March.
    15. Ahmed Kayad & Dimitrios S. Paraforos & Francesco Marinello & Spyros Fountas, 2020. "Latest Advances in Sensor Applications in Agriculture," Agriculture, MDPI, vol. 10(8), pages 1-8, August.
    16. Li Zhao & Tong Heng & Lili Yang & Xuan Xu & Yue Feng, 2021. "Study on the Farmland Improvement Effect of Drainage Measures under Film Mulch with Drip Irrigation in Saline–Alkali Land in Arid Areas," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    17. Sagar Regmi & Paul Davidson & Cody Allen, 2024. "Yield Impact of Data-Informed Surface Drainage: An On-Farm Case Study," Agriculture, MDPI, vol. 14(12), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:229:y:2020:i:c:s0378377419302975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.