IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v249y2021ics0378377421000561.html
   My bibliography  Save this article

Detecting subsurface drainage pipes using a fully convolutional network with optical images

Author

Listed:
  • Song, Homin
  • Woo, Dong Kook
  • Yan, Qina

Abstract

More than half of croplands in the Midwestern United States are equipped with subsurface drainage pipes to reduce excess water in productive but wet areas. The use of drainage systems not only reduces subsurface water table to prevent waterlogging and flooding but also increases nutrient losses by developing artificial preferential flow paths. The exact locations of subsurface drainage pipes are thus imperative to manage and monitor water quality and nonpoint source pollution. However, such data are not widely available due to private ownership. Previous studies used conventional image filtering methods, thermal images, and ground penetration radar to detect subsurface drainage pipes. Due to surface features, such as furrow and depressions, and their limited data availability, these experiments did not provide a robust approach to identify subsurface drainage pipes over a large area. To overcome these limitations, in this study, we propose a subsurface drainage pipe detection approach based on deep learning with optical images. Our deep learning approach uses a fully convolution network (FCN) architecture that takes an optical image patch as an input and gives an output of pixel-wise drainage pipe detection map. The FCN was trained and validated using optical image datasets obtained from a freeware Google Earth that provides temporally and spatially abundant data. The trained FCN was then applied to large-scale drainage pipe detection tasks to evaluate its performance. The performance comparison between the proposed deep learning approach and conventional image processing techniques (Sobel and Canny edge detection methods) was also carried out. The results demonstrate that the proposed deep learning approach shows accurate and robust drain line detection performance with an average Dice coefficient of 0.58 for validation sets, providing superior performance over the conventional image processing techniques.

Suggested Citation

  • Song, Homin & Woo, Dong Kook & Yan, Qina, 2021. "Detecting subsurface drainage pipes using a fully convolutional network with optical images," Agricultural Water Management, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:agiwat:v:249:y:2021:i:c:s0378377421000561
    DOI: 10.1016/j.agwat.2021.106791
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421000561
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106791?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allred, Barry & Martinez, Luis & Fessehazion, Melake K. & Rouse, Greg & Williamson, Tanja N. & Wishart, DeBonne & Koganti, Triven & Freeland, Robert & Eash, Neal & Batschelet, Adam & Featheringill, Ro, 2020. "Overall results and key findings on the use of UAV visible-color, multispectral, and thermal infrared imagery to map agricultural drainage pipes," Agricultural Water Management, Elsevier, vol. 232(C).
    2. Tomislav Hengl & Jorge Mendes de Jesus & Gerard B M Heuvelink & Maria Ruiperez Gonzalez & Milan Kilibarda & Aleksandar Blagotić & Wei Shangguan & Marvin N Wright & Xiaoyuan Geng & Bernhard Bauer-Marsc, 2017. "SoilGrids250m: Global gridded soil information based on machine learning," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-40, February.
    3. Naz, B.S. & Ale, S. & Bowling, L.C., 2009. "Detecting subsurface drainage systems and estimating drain spacing in intensively managed agricultural landscapes," Agricultural Water Management, Elsevier, vol. 96(4), pages 627-637, April.
    4. Woo, Dong Kook & Song, Homin & Kumar, Praveen, 2019. "Mapping subsurface tile drainage systems with thermal images," Agricultural Water Management, Elsevier, vol. 218(C), pages 94-101.
    5. Kratt, C.B. & Woo, D.K. & Johnson, K.N. & Haagsma, M. & Kumar, P. & Selker, J. & Tyler, S., 2020. "Field trials to detect drainage pipe networks using thermal and RGB data from unmanned aircraft," Agricultural Water Management, Elsevier, vol. 229(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Woo, Dong Kook & Ji, Junghu & Song, Homin, 2023. "Subsurface drainage pipe detection using an ensemble learning approach and aerial images," Agricultural Water Management, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allred, Barry & Martinez, Luis & Fessehazion, Melake K. & Rouse, Greg & Koganti, Triven & Freeland, Robert & Eash, Neal & Wishart, DeBonne & Featheringill, Robert, 2021. "Time of day impact on mapping agricultural subsurface drainage systems with UAV thermal infrared imagery," Agricultural Water Management, Elsevier, vol. 256(C).
    2. Allred, Barry & Martinez, Luis & Khanal, Sami & Sawyer, Audrey H. & Rouse, Greg, 2022. "Subsurface drainage outlet detection in ditches and streams with UAV thermal infrared imagery: Preliminary research," Agricultural Water Management, Elsevier, vol. 271(C).
    3. Deuss, Kirstin Ella & Almond, Peter C. & Carrick, Sam & Kees, Lawrence John, 2023. "Identification, mapping, and characterisation of a mature artificial mole channel network using ground-penetrating radar," Agricultural Water Management, Elsevier, vol. 288(C).
    4. Woo, Dong Kook & Ji, Junghu & Song, Homin, 2023. "Subsurface drainage pipe detection using an ensemble learning approach and aerial images," Agricultural Water Management, Elsevier, vol. 287(C).
    5. Allred, Barry & Martinez, Luis & Fessehazion, Melake K. & Rouse, Greg & Williamson, Tanja N. & Wishart, DeBonne & Koganti, Triven & Freeland, Robert & Eash, Neal & Batschelet, Adam & Featheringill, Ro, 2020. "Overall results and key findings on the use of UAV visible-color, multispectral, and thermal infrared imagery to map agricultural drainage pipes," Agricultural Water Management, Elsevier, vol. 232(C).
    6. Kratt, C.B. & Woo, D.K. & Johnson, K.N. & Haagsma, M. & Kumar, P. & Selker, J. & Tyler, S., 2020. "Field trials to detect drainage pipe networks using thermal and RGB data from unmanned aircraft," Agricultural Water Management, Elsevier, vol. 229(C).
    7. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Elliott R. Dossou-Yovo & Sander J. Zwart & Amadou Kouyaté & Ibrahima Ouédraogo & Oladele Bakare, 2018. "Predictors of Drought in Inland Valley Landscapes and Enabling Factors for Rice Farmers’ Mitigation Measures in the Sudan-Sahel Zone," Sustainability, MDPI, vol. 11(1), pages 1-17, December.
    9. Linghua Qiu & Junhao He & Chao Yue & Philippe Ciais & Chunmiao Zheng, 2024. "Substantial terrestrial carbon emissions from global expansion of impervious surface area," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Huang, Yawen & Tao, Bo & Lal, Rattan & Lorenz, Klaus & Jacinthe, Pierre-Andre & Shrestha, Raj K. & Bai, Xiongxiong & Singh, Maninder P. & Lindsey, Laura E. & Ren, Wei, 2023. "A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    11. Mark A. Anthony & Leho Tedersoo & Bruno Vos & Luc Croisé & Henning Meesenburg & Markus Wagner & Henning Andreae & Frank Jacob & Paweł Lech & Anna Kowalska & Martin Greve & Genoveva Popova & Beat Frey , 2024. "Fungal community composition predicts forest carbon storage at a continental scale," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Tong Qiu & Robert Andrus & Marie-Claire Aravena & Davide Ascoli & Yves Bergeron & Roberta Berretti & Daniel Berveiller & Michal Bogdziewicz & Thomas Boivin & Raul Bonal & Don C. Bragg & Thomas Caignar, 2022. "Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Joachim Maes & Adrián G. Bruzón & José I. Barredo & Sara Vallecillo & Peter Vogt & Inés Marí Rivero & Fernando Santos-Martín, 2023. "Accounting for forest condition in Europe based on an international statistical standard," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Telmo José Mendes & Diego Silva Siqueira & Eduardo Barretto Figueiredo & Ricardo de Oliveira Bordonal & Mara Regina Moitinho & José Marques Júnior & Newton La Scala Jr., 2021. "Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16410-16427, November.
    15. Allred, Barry & Eash, Neal & Freeland, Robert & Martinez, Luis & Wishart, DeBonne, 2018. "Effective and efficient agricultural drainage pipe mapping with UAS thermal infrared imagery: A case study," Agricultural Water Management, Elsevier, vol. 197(C), pages 132-137.
    16. Joachim Eisenberg & Fabrice A. Muvundja, 2020. "Quantification of Erosion in Selected Catchment Areas of the Ruzizi River (DRC) Using the (R)USLE Model," Land, MDPI, vol. 9(4), pages 1-18, April.
    17. Banerjee, Onil & Crossman, Neville & Vargas, Renato & Brander, Luke & Verburg, Peter & Cicowiez, Martin & Hauck, Jennifer & McKenzie, Emily, 2020. "Global socio-economic impacts of changes in natural capital and ecosystem services: State of play and new modeling approaches," Ecosystem Services, Elsevier, vol. 46(C).
    18. Sarah R. Weiskopf & Forest Isbell & Maria Isabel Arce-Plata & Moreno Di Marco & Mike Harfoot & Justin Johnson & Susannah B. Lerman & Brian W. Miller & Toni Lyn Morelli & Akira S. Mori & Ensheng Weng &, 2024. "Biodiversity loss reduces global terrestrial carbon storage," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Peter Bossew & Giorgia Cinelli & Giancarlo Ciotoli & Quentin G. Crowley & Marc De Cort & Javier Elío Medina & Valeria Gruber & Eric Petermann & Tore Tollefsen, 2020. "Development of a Geogenic Radon Hazard Index—Concept, History, Experiences," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    20. Carlos Manuel Hernández & Aliou Faye & Mamadou Ousseynou Ly & Zachary P. Stewart & P. V. Vara Prasad & Leonardo Mendes Bastos & Luciana Nieto & Ana J. P. Carcedo & Ignacio Antonio Ciampitti, 2021. "Soil and Climate Characterization to Define Environments for Summer Crops in Senegal," Sustainability, MDPI, vol. 13(21), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:249:y:2021:i:c:s0378377421000561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.