IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v296y2024ics0378377424001471.html
   My bibliography  Save this article

Performances of different yield-detrending methods in assessing the impacts of agricultural drought and flooding: A case study in the middle-and-lower reach of the Yangtze River, China

Author

Listed:
  • Meng, Huayue
  • Qian, Long

Abstract

In evaluating the impacts of drought and flooding disasters on crop yields, accurately calculating meteorological yield (i.e., detrended yield) is an important procedure. The present work aimed to compare various yield-detrending methods in terms of characterizing the regression relationships between meteorological yield and the intensities of drought and flooding. Taking the middle-and-lower reach of the Yangtze River (MLRYR) as the study region, the intensities of drought and flooding during the growing seasons of four study crops (cotton, oilseed rape, wheat, and maize) were quantified using the standardized precipitation evapotranspiration index. Nine popular yield-detrending methods and the first-difference method were employed to determine meteorological yields. The results indicated that the examined methods consistently identified the cases with very significant yield-reducing impacts of drought and flooding. The first-difference method identified 58 significant regression relationships, outperforming the yield-detrending methods (identifying 39–44 significant regression relationships). The 20-yr moving average and the linear fitting methods performed best at the provincial level, while the cubic smoothing spline and the quadratic polynomial fitting methods performed best at the district level. Based on these best-performing methods, the average method was proposed and exhibited wider applicability and better performance than the individual methods. In terms of meteorological yield losses, cotton was the most affected crop (35% of all districts experienced severe cotton yield loss) and Anhui was the most affected region (with an average crop yield loss of 14.06%). The yield-reducing impact of flooding was significant in 41 districts; in comparison, the impact of drought was significant only in 7 districts. Additionally, oilseed rape was the crop most affected by drought and flooding. These results can provide guidance for assessing agricultural drought and flooding disasters under climate change.

Suggested Citation

  • Meng, Huayue & Qian, Long, 2024. "Performances of different yield-detrending methods in assessing the impacts of agricultural drought and flooding: A case study in the middle-and-lower reach of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:agiwat:v:296:y:2024:i:c:s0378377424001471
    DOI: 10.1016/j.agwat.2024.108812
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424001471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108812?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toshichika Iizumi & Jing-Jia Luo & Andrew J. Challinor & Gen Sakurai & Masayuki Yokozawa & Hirofumi Sakuma & Molly E. Brown & Toshio Yamagata, 2014. "Impacts of El Niño Southern Oscillation on the global yields of major crops," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    2. Gao, Yukun & Zhao, Hongfang & Zhao, Chuang & Hu, Guohua & Zhang, Han & Liu, Xue & Li, Nan & Hou, Haiyan & Li, Xia, 2022. "Spatial and temporal variations of maize and wheat yield gaps and their relationships with climate in China," Agricultural Water Management, Elsevier, vol. 270(C).
    3. Qian, Wuyong & Wang, Jue, 2020. "An improved seasonal GM(1,1) model based on the HP filter for forecasting wind power generation in China," Energy, Elsevier, vol. 209(C).
    4. Yao, Ning & Li, Yi & Liu, Qingzhu & Zhang, Siyuan & Chen, Xinguo & Ji, Yadong & Liu, Fenggui & Pulatov, Alim & Feng, Puyu, 2022. "Response of wheat and maize growth-yields to meteorological and agricultural droughts based on standardized precipitation evapotranspiration indexes and soil moisture deficit indexes," Agricultural Water Management, Elsevier, vol. 266(C).
    5. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    6. Darzi-Naftchali, Abdullah & Mirlatifi, Seyed Majid & Shahnazari, Ali & Ejlali, Farid & Mahdian, Mohammad Hossein, 2013. "Effect of subsurface drainage on water balance and water table in poorly drained paddy fields," Agricultural Water Management, Elsevier, vol. 130(C), pages 61-68.
    7. Deepak K. Ray & James S. Gerber & Graham K. MacDonald & Paul C. West, 2015. "Climate variation explains a third of global crop yield variability," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    8. He, Yongxiu & Wang, Bing & Wang, Jianhui & Xiong, Wei & Xia, Tian, 2013. "Correlation between Chinese and international energy prices based on a HP filter and time difference analysis," Energy Policy, Elsevier, vol. 62(C), pages 898-909.
    9. Potopová, Vera & Trnka, Miroslav & Hamouz, Pavel & Soukup, Josef & Castraveț, Tudor, 2020. "Statistical modelling of drought-related yield losses using soil moisture-vegetation remote sensing and multiscalar indices in the south-eastern Europe," Agricultural Water Management, Elsevier, vol. 236(C).
    10. Pei Yao & Long Qian & Zhaolin Wang & Huayue Meng & Xueliang Ju, 2022. "Assessing Drought, Flood, and High Temperature Disasters during Sugarcane Growth Stages in Southern China," Agriculture, MDPI, vol. 12(12), pages 1-18, December.
    11. Qian, Long & Meng, Huayue & Chen, Xiaohong & Tang, Rong, 2023. "Evaluating agricultural drought and flood abrupt alternation: A case study of cotton in the middle-and-lower Yangtze River, China," Agricultural Water Management, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Long & Meng, Huayue & Chen, Xiaohong & Tang, Rong, 2023. "Evaluating agricultural drought and flood abrupt alternation: A case study of cotton in the middle-and-lower Yangtze River, China," Agricultural Water Management, Elsevier, vol. 283(C).
    2. Cao, Juan & Zhang, Zhao & Tao, Fulu & Chen, Yi & Luo, Xiangzhong & Xie, Jun, 2023. "Forecasting global crop yields based on El Nino Southern Oscillation early signals," Agricultural Systems, Elsevier, vol. 205(C).
    3. Shahzad, Muhammad Faisal & Abdulai, Awudu, 2020. "Adaptation to extreme weather conditions and farm performance in rural Pakistan," Agricultural Systems, Elsevier, vol. 180(C).
    4. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    5. Wang, Teng & Yi, Fujin & Liu, Huilin & Wu, Ximing & Zhong, Funing, 2021. "Can Agricultural Mechanization Have a Mitigation Effect on China's Yield Variability?," 2021 Conference, August 17-31, 2021, Virtual 315098, International Association of Agricultural Economists.
    6. Cao, Yan & Cheng, Sheng & Li, Xinran, 2024. "Co-movements between heterogeneous crude oil and food markets: Does temperature change really matter?," Research in International Business and Finance, Elsevier, vol. 67(PB).
    7. Bucheli, Janic & Visse, Margot & Herrera, Juan & Häner, Lilia Levy & Tack, Jesse & Finger, Robert, 2022. "Precipitation causes quality losses of economic relevance in wheat production," 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium 321208, Agricultural Economics Society - AES.
    8. Florian Schierhorn & Max Hofmann & Taras Gagalyuk & Igor Ostapchuk & Daniel Müller, 2021. "Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages," Climatic Change, Springer, vol. 169(3), pages 1-19, December.
    9. Su, Zheng’e & Zhao, Jin & Marek, Thomas H. & Liu, Ke & Harrison, Matthew Tom & Xue, Qingwu, 2022. "Drought tolerant maize hybrids have higher yields and lower water use under drought conditions at a regional scale," Agricultural Water Management, Elsevier, vol. 274(C).
    10. Shengli Liu & Wenbin Wu & Xiaoguang Yang & Peng Yang & Jing Sun, 2020. "Exploring drought dynamics and its impacts on maize yield in the Huang-Huai-Hai farming region of China," Climatic Change, Springer, vol. 163(1), pages 415-430, November.
    11. Emilie Stokeld & Simon A. Croft & Jonathan M. H. Green & Christopher D. West, 2020. "Climate change, crops and commodity traders: subnational trade analysis highlights differentiated risk exposure," Climatic Change, Springer, vol. 162(2), pages 175-192, September.
    12. Rezwanul Parvez & Nazea Hasan Khan Chowdhury, 2020. "Weather and Crop Management Impact on Crop Yield Variability," Agriculture and Food Sciences Research, Asian Online Journal Publishing Group, vol. 7(1), pages 7-15.
    13. Ching-Pong Poo, Mark & Wang, Tianni & Yang, Zaili, 2024. "Global food supply chain resilience assessment: A case in the United Kingdom," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    14. Ngawang Chhogyel & Lalit Kumar & Yadunath Bajgai, 2020. "Consequences of Climate Change Impacts and Incidences of Extreme Weather Events in Relation to Crop Production in Bhutan," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    15. Jingpeng Guo & Kebiao Mao & Yinghui Zhao & Zhong Lu & Xiaoping Lu, 2019. "Impact of Climate on Food Security in Mainland China: A New Perspective Based on Characteristics of Major Agricultural Natural Disasters and Grain Loss," Sustainability, MDPI, vol. 11(3), pages 1-25, February.
    16. Wang, Jianqing & Liu, Xiaoyu & Cheng, Kun & Zhang, Xuhui & Li, Lianqing & Pan, Genxing, 2018. "Winter wheat water requirement and utilization efficiency under simulated climate change conditions: A Penman-Monteith model evaluation," Agricultural Water Management, Elsevier, vol. 197(C), pages 100-109.
    17. Wu, Bingfang & Ma, Zonghan & Boken, Vijendra K. & Zeng, Hongwei & Shang, Jiali & Igor, Savin & Wang, Jinxia & Yan, Nana, 2022. "Regional differences in the performance of drought mitigation measures in 12 major wheat-growing regions of the world," Agricultural Water Management, Elsevier, vol. 273(C).
    18. Xi Deng & Yao Huang & Wenjuan Sun & Lingfei Yu & Xunyu Hu & Sheng Wang, 2019. "Different Time Windows Provide Divergent Estimates of Climate Variability and Change Impacts on Maize Yield in Northeast China," Sustainability, MDPI, vol. 11(23), pages 1-17, November.
    19. Bucheli, Janic & Dalhaus, Tobias & Finger, Robert, 2022. "Temperature effects on crop yields in heat index insurance," Food Policy, Elsevier, vol. 107(C).
    20. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:296:y:2024:i:c:s0378377424001471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.