IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v236y2020ics0378377420303656.html
   My bibliography  Save this article

Statistical modelling of drought-related yield losses using soil moisture-vegetation remote sensing and multiscalar indices in the south-eastern Europe

Author

Listed:
  • Potopová, Vera
  • Trnka, Miroslav
  • Hamouz, Pavel
  • Soukup, Josef
  • Castraveț, Tudor

Abstract

Meteorological and agricultural information coupled with remote sensing observations has been used to assess the effectiveness of satellite-derived indices in yield estimations. The estimate yield models generated by both the regression (MLR) and Bayesian network (BBN) algorithms and their levels of predictive skill were assessed. The enhanced vegetation index (EVI2), soil water index (SWI), standardized precipitation evaporation index (SPEI) have been considered predictors for three rainfed crops (maize, sunflower and grapevine) grown in 37 districts in the Republic of Moldova (RM). We used the weekly EVI2, which was collected by MODIS instruments aboard the Terra satellite with a 250m × 250m spatial resolution and aggregated for each district during the 2000–2018 period. We also used the weekly SWI, which was collected from the ASCAT instruments with a 12 km x 12 km spatial resolution and aggregated for each district at the topsoil (0–40 cm; SWI-12) and the root-zone layer (0–100 cm; SWI-14) during 2000–2018. The multiscalar SPEI during 1951–2018 farming years proved to be a significant addition to the remote sensing indices and led to the development of a model that improved the yield assessment. The study also summarized (i) the optimal time window of satellite-derived SWIi and EVI2i for yield estimation, and (ii) the capability of remotely sensed indices for representing the spatio–temporal variations of agricultural droughts. We developed statistical soil-vegetation-atmosphere models to explore drought-related yield losses. The skill scores of the sunflower MLR and BBN models were higher than those for the maize and grape models and were able to estimate yields with reasonable accuracy and predictive power. The accurate estimation of maize, sunflower and grapevine yields was observed two months before the harvest (RMSE of ∼1.2 tha-1). Despite the fact that summer crops (maize, sunflower) are able to develop a root system that uses the entire root zone depth, however, the SWI-12 had the stronger correlation with crop yield, then SWI-14. This explains much better the fit between yields of the crops and SWI-12, which represents soil moisture anomaly in the key rooting layer of soil. In any case, all summer crops showed negative correlations with each of the remote sensing soil moisture indices in the early and middle of the growing season, with SWI-12 performing better than SWI-14. Based on the crop-specific soil moisture model, we found that topsoil moisture declines in the most drought-susceptible crop growth stages, which indicates that RM is a good candidate for studying drought persists as main driver of rainfed yield losses in the south-eastern Europe.

Suggested Citation

  • Potopová, Vera & Trnka, Miroslav & Hamouz, Pavel & Soukup, Josef & Castraveț, Tudor, 2020. "Statistical modelling of drought-related yield losses using soil moisture-vegetation remote sensing and multiscalar indices in the south-eastern Europe," Agricultural Water Management, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:agiwat:v:236:y:2020:i:c:s0378377420303656
    DOI: 10.1016/j.agwat.2020.106168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420303656
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lecerf, Rémi & Ceglar, Andrej & López-Lozano, Raúl & Van Der Velde, Marijn & Baruth, Bettina, 2019. "Assessing the information in crop model and meteorological indicators to forecast crop yield over Europe," Agricultural Systems, Elsevier, vol. 168(C), pages 191-202.
    2. Jakob Zscheischler & Seth Westra & Bart J. J. M. Hurk & Sonia I. Seneviratne & Philip J. Ward & Andy Pitman & Amir AghaKouchak & David N. Bresch & Michael Leonard & Thomas Wahl & Xuebin Zhang, 2018. "Future climate risk from compound events," Nature Climate Change, Nature, vol. 8(6), pages 469-477, June.
    3. El-Naggar, A.G. & Hedley, C.B. & Horne, D. & Roudier, P. & Clothier, B.E., 2020. "Soil sensing technology improves application of irrigation water," Agricultural Water Management, Elsevier, vol. 228(C).
    4. van Leeuwen, Cornelis & Darriet, Philippe, 2016. "The Impact of Climate Change on Viticulture and Wine Quality," Journal of Wine Economics, Cambridge University Press, vol. 11(1), pages 150-167, May.
    5. Abad, Francisco Javier & Marín, Diana & Loidi, Maite & Miranda, Carlos & Royo, José Bernardo & Urrestarazu, Jorge & Santesteban, Luis Gonzaga, 2019. "Evaluation of the incidence of severe trimming on grapevine (Vitis vinifera L.) water consumption," Agricultural Water Management, Elsevier, vol. 213(C), pages 646-653.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vera Potopová & Marie Musiolková & Juliana Arbelaez Gaviria & Miroslav Trnka & Petr Havlík & Esther Boere & Tudor Trifan & Nina Muntean & Md Rafique Ahasan Chawdhery, 2023. "Water Consumption by Livestock Systems from 2002–2020 and Predictions for 2030–2050 under Climate Changes in the Czech Republic," Agriculture, MDPI, vol. 13(7), pages 1-29, June.
    2. Manman Zhang & Dang Luo & Yongqiang Su, 2022. "Drought monitoring and agricultural drought loss risk assessment based on multisource information fusion," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 775-801, March.
    3. Potopová, V. & Trifan, T. & Trnka, M. & De Michele, C. & Semerádová, D. & Fischer, M. & Meitner, J. & Musiolková, M. & Muntean, N. & Clothier, B., 2023. "Copulas modelling of maize yield losses – drought compound events using the multiple remote sensing indices over the Danube River Basin," Agricultural Water Management, Elsevier, vol. 280(C).
    4. Meng, Huayue & Qian, Long, 2024. "Performances of different yield-detrending methods in assessing the impacts of agricultural drought and flooding: A case study in the middle-and-lower reach of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 296(C).
    5. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Xu, Yang & Hao, Fanghua, 2021. "Agricultural drought prediction in China based on drought propagation and large-scale drivers," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Araneda-Cabrera, Ronnie J. & Bermúdez, María & Puertas, Jerónimo, 2021. "Assessment of the performance of drought indices for explaining crop yield variability at the national scale: Methodological framework and application to Mozambique," Agricultural Water Management, Elsevier, vol. 246(C).
    7. Potopová, V. & Trnka, M. & Vizina, A. & Semerádová, D. & Balek, J. & Chawdhery, M.R.A. & Musiolková, M. & Pavlík, P. & Možný, M. & Štěpánek, P. & Clothier, B., 2022. "Projection of 21st century irrigation water requirements for sensitive agricultural crop commodities across the Czech Republic," Agricultural Water Management, Elsevier, vol. 262(C).
    8. Soumyashree Dixit & V. Neethin & K. V. Jayakumar, 2023. "Assessment of Crop-Drought Relationship: A Climate Change Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 4075-4095, August.
    9. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Hao, Fanghua, 2022. "Changes and driving factors of compound agricultural droughts and hot events in eastern China," Agricultural Water Management, Elsevier, vol. 263(C).
    10. Rigas Giovos & Dimitrios Tassopoulos & Dionissios Kalivas & Nestor Lougkos & Anastasia Priovolou, 2021. "Remote Sensing Vegetation Indices in Viticulture: A Critical Review," Agriculture, MDPI, vol. 11(5), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 2020. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899, May.
    2. Weiqing Han & Lei Zhang & Gerald A. Meehl & Shoichiro Kido & Tomoki Tozuka & Yuanlong Li & Michael J. McPhaden & Aixue Hu & Anny Cazenave & Nan Rosenbloom & Gary Strand & B. Jason West & Wen Xing, 2022. "Sea level extremes and compounding marine heatwaves in coastal Indonesia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Lena I. Fuldauer & Scott Thacker & Robyn A. Haggis & Francesco Fuso-Nerini & Robert J. Nicholls & Jim W. Hall, 2022. "Targeting climate adaptation to safeguard and advance the Sustainable Development Goals," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Zhang, Yitong & Hao, Zengchao & Zhang, Yu, 2023. "Agricultural risk assessment of compound dry and hot events in China," Agricultural Water Management, Elsevier, vol. 277(C).
    5. J. J. Wijetunge & N. G. P. B. Neluwala, 2023. "Compound flood hazard assessment and analysis due to tropical cyclone-induced storm surges, waves and precipitation: a case study for coastal lowlands of Kelani river basin in Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3979-4007, April.
    6. Kuik, Onno & Zhou, Fujin & Ciullo, Alessio & Brusselaers, Jan, 2022. "How vulnerable is Europe to severe climate-related natural disasters abroad? A dynamic CGE analysis of the international financial and economic impacts of a large hurricane in the southern USA," Conference papers 333438, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    7. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    8. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Randell, Heather & Jiang, Chengsheng & Liang, Xin-Zhong & Murtugudde, Raghu & Sapkota, Amir, 2021. "Food insecurity and compound environmental shocks in Nepal: Implications for a changing climate," World Development, Elsevier, vol. 145(C).
    10. Isabel Dorado-Liñán & Blanca Ayarzagüena & Flurin Babst & Guobao Xu & Luis Gil & Giovanna Battipaglia & Allan Buras & Vojtěch Čada & J. Julio Camarero & Liam Cavin & Hugues Claessens & Igor Drobyshev , 2022. "Jet stream position explains regional anomalies in European beech forest productivity and tree growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Veruska Muccione & Thomas Lontzek & Christian Huggel & Philipp Ott & Nadine Salzmann, 2023. "An application of dynamic programming to local adaptation decision-making," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 523-544, October.
    12. Abad, Francisco Javier & Marín, Diana & Loidi, Maite & Miranda, Carlos & Royo, José Bernardo & Urrestarazu, Jorge & Santesteban, Luis Gonzaga, 2019. "Evaluation of the incidence of severe trimming on grapevine (Vitis vinifera L.) water consumption," Agricultural Water Management, Elsevier, vol. 213(C), pages 646-653.
    13. Petruzzellis, Francesco & Natale, Sara & Bariviera, Luca & Calderan, Alberto & Mihelčič, Alenka & Reščič, Jan & Sivilotti, Paolo & Šuklje, Katja & Lisjak, Klemen & Vanzo, Andreja & Nardini, Andrea, 2022. "High spatial heterogeneity of water stress levels in Refošk grapevines cultivated in Classical Karst," Agricultural Water Management, Elsevier, vol. 260(C).
    14. Valentina Gallina & Silvia Torresan & Alex Zabeo & Andrea Critto & Thomas Glade & Antonio Marcomini, 2020. "A Multi-Risk Methodology for the Assessment of Climate Change Impacts in Coastal Zones," Sustainability, MDPI, vol. 12(9), pages 1-28, May.
    15. Thomas, J. & Brunette, M. & Leblois, A., 2022. "The determinants of adapting forest management practices to climate change: Lessons from a survey of French private forest owners," Forest Policy and Economics, Elsevier, vol. 135(C).
    16. Amogh Prakasha Kumar & Richard Watt & Laura Meriluoto, 2021. "New Evidence on Using Expert Ratings to Proxy for Wine Quality in Climate Change Research," Working Papers in Economics 21/10, University of Canterbury, Department of Economics and Finance.
    17. Codjoe, Samuel N.A. & Gough, Katherine V. & Wilby, Robert L. & Kasei, Raymond & Yankson, Paul W.K. & Amankwaa, Ebenezer F. & Abarike, Mercy A. & Atiglo, D. Yaw & Kayaga, Sam & Mensah, Peter & Nabilse,, 2020. "Impact of extreme weather conditions on healthcare provision in urban Ghana," Social Science & Medicine, Elsevier, vol. 258(C).
    18. Yuqing Zhang & Guangxiong Mao & Changchun Chen & Liucheng Shen & Binyu Xiao, 2021. "Population Exposure to Compound Droughts and Heatwaves in the Observations and ERA5 Reanalysis Data in the Gan River Basin, China," Land, MDPI, vol. 10(10), pages 1-28, September.
    19. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2020. "Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth," Agricultural Water Management, Elsevier, vol. 231(C).
    20. Arthur Moses & Jean E. T. McLain & Aminata Kilungo & Robert A. Root & Leif Abrell & Sanlyn Buxner & Flor Sandoval & Theresa Foley & Miriam Jones & Mónica D. Ramírez-Andreotta, 2022. "Minding the gap: socio-demographic factors linked to the perception of environmental pollution, water harvesting infrastructure, and gardening characteristics," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 12(3), pages 594-610, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:236:y:2020:i:c:s0378377420303656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.