IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v283y2023ics0378377423001786.html
   My bibliography  Save this article

Evaluating agricultural drought and flood abrupt alternation: A case study of cotton in the middle-and-lower Yangtze River, China

Author

Listed:
  • Qian, Long
  • Meng, Huayue
  • Chen, Xiaohong
  • Tang, Rong

Abstract

Drought and flood abrupt alternations (DFAA) are new challenges under climate change with particular emphasis on its affects related to agriculture. However, current regional DFAA analysis research rarely investigates agricultural DFAA with special regards to agricultural elements. In this work, a method based on a daily scale index named the standardized antecedent precipitation evapotranspiration index (SAPEI) and crop characteristics was established to investigate the characteristics of agricultural DFAA during cotton growth stages in the middle-and-lower Yangtze River (MLRYR) during 1961–2020. Additionally, the influence of DFAA on cotton climatic yield in response to flooding and drought was examined by multiple regression. The results demonstrate that the SAPEI efficiently described the relations between cotton climatic yield and the intensities of cotton drought and flood and well characterized cotton DFAA events, especially for short-term events. The most recent decade over the past six decades has seen the most frequent cotton DFAA events, and the only significant trend (p < 0.05) of cotton DFAA frequency was an upward trend in Jiangsu Province. In addition, the middle growth stage of cotton was the most DFAA-affected period within a year. Cotton drought-flood alternations (DF) were more common than flood-drought alternations (FD). The most DF-prone and FD-prone regions differed greatly, but the northeastern MLRYR was the most DFAA-prone region. In all provinces, the cotton DFAA frequency was significantly and positively related to the cotton drought frequency. Finally, the relations between cotton climatic yield and the intensities of drought and flood were much less significant in the years with more DFAA events than in other years, indicating an obvious negative interaction between drought and flood in cotton DFAA events. This finding, at the regional scale, confirmed previous field-scale conclusions on cotton responses to DFAA stress. In summary, this work provides references for agricultural water management in adapting to climate change.

Suggested Citation

  • Qian, Long & Meng, Huayue & Chen, Xiaohong & Tang, Rong, 2023. "Evaluating agricultural drought and flood abrupt alternation: A case study of cotton in the middle-and-lower Yangtze River, China," Agricultural Water Management, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:agiwat:v:283:y:2023:i:c:s0378377423001786
    DOI: 10.1016/j.agwat.2023.108313
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423001786
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reicosky, D. C. & Meyer, W. S. & Schaefer, N. L. & Sides, R. D., 1985. "Cotton response to short-term waterlogging imposed with a water-table gradient facility," Agricultural Water Management, Elsevier, vol. 10(2), pages 127-143, September.
    2. Yao, Ning & Li, Yi & Liu, Qingzhu & Zhang, Siyuan & Chen, Xinguo & Ji, Yadong & Liu, Fenggui & Pulatov, Alim & Feng, Puyu, 2022. "Response of wheat and maize growth-yields to meteorological and agricultural droughts based on standardized precipitation evapotranspiration indexes and soil moisture deficit indexes," Agricultural Water Management, Elsevier, vol. 266(C).
    3. Bi, Wuxia & Weng, Baisha & Yan, Denghua & Wang, Mengke & Wang, Hao & Jing, Lanshu & Yan, Siying, 2022. "Soil phosphorus loss increases under drought-flood abrupt alternation in summer maize planting area," Agricultural Water Management, Elsevier, vol. 262(C).
    4. Deepak K. Ray & James S. Gerber & Graham K. MacDonald & Paul C. West, 2015. "Climate variation explains a third of global crop yield variability," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    5. Yong Yuan & Denghua Yan & Zhe Yuan & Jun Yin & Zhongnan Zhao, 2019. "Spatial Distribution of Precipitation in Huang-Huai-Hai River Basin between 1961 to 2016, China," IJERPH, MDPI, vol. 16(18), pages 1-11, September.
    6. Munyasya, Alex Ndolo & Koskei, Kiprotich & Zhou, Rui & Liu, Shu-Tong & Indoshi, Sylvia Ngaira & Wang, Wei & Zhang, Xu-Cheng & Cheruiyot, Wesly Kiprotich & Mburu, David Mwehia & Nyende, Aggrey Bernard , 2022. "Integrated on-site & off-site rainwater-harvesting system boosts rainfed maize production for better adaptation to climate change," Agricultural Water Management, Elsevier, vol. 269(C).
    7. Darzi-Naftchali, Abdullah & Mirlatifi, Seyed Majid & Shahnazari, Ali & Ejlali, Farid & Mahdian, Mohammad Hossein, 2013. "Effect of subsurface drainage on water balance and water table in poorly drained paddy fields," Agricultural Water Management, Elsevier, vol. 130(C), pages 61-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Huayue & Qian, Long, 2024. "Performances of different yield-detrending methods in assessing the impacts of agricultural drought and flooding: A case study in the middle-and-lower reach of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Huayue & Qian, Long, 2024. "Performances of different yield-detrending methods in assessing the impacts of agricultural drought and flooding: A case study in the middle-and-lower reach of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 296(C).
    2. Cao, Juan & Zhang, Zhao & Tao, Fulu & Chen, Yi & Luo, Xiangzhong & Xie, Jun, 2023. "Forecasting global crop yields based on El Nino Southern Oscillation early signals," Agricultural Systems, Elsevier, vol. 205(C).
    3. Jeetendra Prakash Aryal & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri & Dil Bahadur Rahut & M. L. Jat, 2020. "Climate change and agriculture in South Asia: adaptation options in smallholder production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5045-5075, August.
    4. Rosa Carbonell-Bojollo & Oscar Veroz-Gonzalez & Rafaela Ordoñez-Fernandez & Manuel Moreno-Garcia & Gottlieb Basch & Amir Kassam & Miguel A. Repullo-Ruiberriz de Torres & Emilio J. Gonzalez-Sanchez, 2019. "The Effect of Conservation Agriculture and Environmental Factors on CO 2 Emissions in a Rainfed Crop Rotation," Sustainability, MDPI, vol. 11(14), pages 1-19, July.
    5. Wenying Wang & Shuwen Wang, 2024. "Sustainable Stormwater Management for Different Types of Water-Scarce Cities: Environmental Policy Effect of Sponge City Projects in China," Sustainability, MDPI, vol. 16(13), pages 1-21, July.
    6. Zhao, Xin & Calvin, Katherine & Patel, Pralit & Abigail, Snyder & Wise, Marshall & Waldhoff, Stephanie & Hejazi, Mohamad & Edmonds, James, 2021. "Impacts of interannual climate and biophysical variability on global agriculture markets," Conference papers 333245, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    7. Qiang Wang & Yuanfan Li & Rongrong Li, 2024. "Rethinking the environmental Kuznets curve hypothesis across 214 countries: the impacts of 12 economic, institutional, technological, resource, and social factors," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-19, December.
    8. Linnenluecke, Martina K. & Smith, Tom & McKnight, Brent, 2016. "Environmental finance: A research agenda for interdisciplinary finance research," Economic Modelling, Elsevier, vol. 59(C), pages 124-130.
    9. Wang, Wendi & Straffelini, Eugenio & Tarolli, Paolo, 2023. "Steep-slope viticulture: The effectiveness of micro-water storage in improving the resilience to weather extremes," Agricultural Water Management, Elsevier, vol. 286(C).
    10. Janusz Prusiński & Radosław Nowicki, 2020. "Effect of planting density and row spacing on the yielding of soybean (Glycine max L. Merrill)," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 66(12), pages 616-623.
    11. Shahzad, Muhammad Faisal & Abdulai, Awudu, 2020. "Adaptation to extreme weather conditions and farm performance in rural Pakistan," Agricultural Systems, Elsevier, vol. 180(C).
    12. Darzi-Naftchali, Abdullah & Motevali, Ali & Keikha, Mahdi, 2022. "The life cycle assessment of subsurface drainage performance under rice-canola cropping system," Agricultural Water Management, Elsevier, vol. 266(C).
    13. Kamini Yadav & Hatim M. E. Geli, 2021. "Prediction of Crop Yield for New Mexico Based on Climate and Remote Sensing Data for the 1920–2019 Period," Land, MDPI, vol. 10(12), pages 1-27, December.
    14. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    15. Ibrahim Sufiyan & J.I. Magaji & A.T.Ogah & K.D. Mohammed & K.K Geidam, 2020. "Effect Of Climatic Variables On Agricultural Productivity And Distribution In Plateau State Nigeria," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 4(1), pages 5-9, February.
    16. Wang, Teng & Yi, Fujin & Liu, Huilin & Wu, Ximing & Zhong, Funing, 2021. "Can Agricultural Mechanization Have a Mitigation Effect on China's Yield Variability?," 2021 Conference, August 17-31, 2021, Virtual 315098, International Association of Agricultural Economists.
    17. Seijger, Chris & Chukalla, Abebe & Bremer, Karin & Borghuis, Gerlo & Christoforidou, Maria & Mul, Marloes & Hellegers, Petra & van Halsema, Gerardo, 2023. "Agronomic analysis of WaPOR applications: Confirming conservative biomass water productivity in inherent and climatological variance of WaPOR data outputs," Agricultural Systems, Elsevier, vol. 211(C).
    18. Abdullah Darzi-Naftchali & Henk Ritzema, 2018. "Integrating Irrigation and Drainage Management to Sustain Agriculture in Northern Iran," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    19. Robert Becker Pickson & Ge He & Elliot Boateng, 2022. "Impacts of climate change on rice production: evidence from 30 Chinese provinces," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3907-3925, March.
    20. Sari J Himanen & Hanna Mäkinen & Karoliina Rimhanen & Riitta Savikko, 2016. "Engaging Farmers in Climate Change Adaptation Planning: Assessing Intercropping as a Means to Support Farm Adaptive Capacity," Agriculture, MDPI, vol. 6(3), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:283:y:2023:i:c:s0378377423001786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.