IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v296y2024ics0378377424001227.html
   My bibliography  Save this article

Water footprint in rainfed summer and winter crops: The role of soil moisture

Author

Listed:
  • Rodríguez, Paula Olivera
  • Holzman, Mauro Ezequiel
  • Aldaya, Maite M.
  • Rivas, Raúl Eduardo

Abstract

Argentina is one of the main producers and exporters of grains and oilseeds, ranking third in soybean exports and fourth in barley ones. The 90% of this production occurs within the Argentine Pampas region (APR) under rainfed conditions, but its water consumption and pollution has not been studied in depth. Likewise, the link between soil moisture (SM) and Water Footprint (WF) generation is poorly studied at the global level. And yet, SM is a critical factor for the development of rainfed crops. This study aims to evaluate, at plot scale, the role of SM in the generation of the green (WFgreen) and grey (WFgrey) (WF). Additionally, it estimates the WF for rainfed barley and soybean crops in the Southeast of APR, where there are no reference values. Yields, water consumption and nitrogen (N) pollution load were estimated for different campaigns. Field data (weather, crop and production management) recorded in the study plots were used. Results indicated an average WFgreen of 1236 m3/t for soybeans and a WFgreen of 349 m3/t and WFgrey of 547 m3/t for barley. The study highlights the critical role of SM in both WF sub-indicators. Soil water availability, based on the evaporative fraction during critical growth stages, influenced yields and final WFgreen volumes. In addition, there was an effect on N uptake by crops. In the driest barley campaign, WFgrey increased by 234%. Insufficient SM restricted nutrient uptake, reducing yields and increasing N with the potential to leach or runoff. Consequently, it is suggested to adjust the WFgrey methodology incorporating SM fluctuations and unaccounted N losses. The study contributes to understand the WF drivers and highlights the need to assess them accurately. In particular, it aims to reduce the gaps surrounding the water consumption of rainfed crops, thereby supporting resource conservation and grain provisioning efforts.

Suggested Citation

  • Rodríguez, Paula Olivera & Holzman, Mauro Ezequiel & Aldaya, Maite M. & Rivas, Raúl Eduardo, 2024. "Water footprint in rainfed summer and winter crops: The role of soil moisture," Agricultural Water Management, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:agiwat:v:296:y:2024:i:c:s0378377424001227
    DOI: 10.1016/j.agwat.2024.108787
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424001227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108787?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ababaei, Behnam & Ramezani Etedali, Hadi, 2017. "Water footprint assessment of main cereals in Iran," Agricultural Water Management, Elsevier, vol. 179(C), pages 401-411.
    2. Zhao, Jiongchao & Han, Tong & Wang, Chong & Shi, Xiaoyu & Wang, Kaicheng & Zhao, Mingyu & Chen, Fu & Chu, Qingquan, 2022. "Assessing variation and driving factors of the county-scale water footprint for soybean production in China," Agricultural Water Management, Elsevier, vol. 263(C).
    3. Bocchiola, D. & Nana, E. & Soncini, A., 2013. "Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy," Agricultural Water Management, Elsevier, vol. 116(C), pages 50-61.
    4. Aldaya, M.M. & Allan, J.A. & Hoekstra, A.Y., 2010. "Strategic importance of green water in international crop trade," Ecological Economics, Elsevier, vol. 69(4), pages 887-894, February.
    5. Falkenmark, M. & Finlayson, Max & Gordon, L. J. & Bennett, E. M. & Chiuta, T. M. & Coates, D. & Ghosh, N. & Gopalakrishnan, M. & de Groot, R. S. & Jacks, G. & Kendy, Eloise & Oyebande, L. & Moore, M. , 2007. "Agriculture, water, and ecosystems: avoiding the costs of going too far," Book Chapters,, International Water Management Institute.
    6. Li, Zhibin & Feng, Bianbian & Wang, Wei & Yang, Xi & Wu, Pute & Zhuo, La, 2022. "Spatial and temporal sensitivity of water footprint assessment in crop production to modelling inputs and parameters," Agricultural Water Management, Elsevier, vol. 271(C).
    7. S. Sun & P. Wu & Y. Wang & X. Zhao, 2013. "Temporal Variability of Water Footprint for Maize Production: The Case of Beijing from 1978 to 2008," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2447-2463, May.
    8. Falkenmark, M. & Finlayson, Max & Gordon, L. J. & Bennett, E. M. & Chiuta, T. M. & Coates, D. & Ghosh, N. & Gopalakrishnan, M. & de Groot, R. S. & Jacks, G. & Kendy, E. & Oyebande, L. & Moore, M. & Pe, 2007. "Agriculture, water, and ecosystems: avoiding the costs of going too far," IWMI Books, Reports H040199, International Water Management Institute.
    9. Vicente Ricardo Barros & José Armando Boninsegna & Inés Angela Camilloni & Martina Chidiak & Graciela Odilia Magrín & Matilde Rusticucci, 2015. "Climate change in Argentina: trends, projections, impacts and adaptation," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 6(2), pages 151-169, March.
    10. Chapagain, A.K. & Hoekstra, A.Y., 2011. "The blue, green and grey water footprint of rice from production and consumption perspectives," Ecological Economics, Elsevier, vol. 70(4), pages 749-758, February.
    11. Gerkani Nezhad Moshizi, Zahra & Bazrafshan, Ommolbanin & Ramezani Etedali, Hadi & Esmaeilpour, Yahya & Collins, Brain, 2023. "Application of inclusive multiple model for the prediction of saffron water footprint," Agricultural Water Management, Elsevier, vol. 277(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Zhang & Qing Tian & Huan Hu & Miao Yu, 2019. "Water Footprint of Food Consumption by Chinese Residents," IJERPH, MDPI, vol. 16(20), pages 1-15, October.
    2. Yu Zhang & Jin-he Zhang & Qing Tian, 2021. "Virtual Water Trade in the Service Sector: China’s Inbound Tourism as a Case Study," IJERPH, MDPI, vol. 18(4), pages 1-20, February.
    3. Rodrigo Gil & Carlos Ricardo Bojacá & Eddie Schrevens, 2017. "Uncertainty of the Agricultural Grey Water Footprint Based on High Resolution Primary Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3389-3400, September.
    4. Cao, Xinchun & Zeng, Wen & Wu, Mengyang & Guo, Xiangping & Wang, Weiguang, 2020. "Hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation," Agricultural Water Management, Elsevier, vol. 231(C).
    5. Yue Zhang & Kai Huang & Yajuan Yu & Tingting Hu & Jing Wei, 2015. "Impact of climate change and drought regime on water footprint of crop production: the case of Lake Dianchi Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 549-566, October.
    6. Yue Zhang & Kai Huang & Yajuan Yu & Linxiu Wu, 2020. "An uncertainty-based multivariate statistical approach to predict crop water footprint under climate change: a case study of Lake Dianchi Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 91-110, October.
    7. Namra Ghaffar & Bushra Noreen & Maryam Muhammad Ali & Amna Ali, 2021. "Rice Yield Estimation in Sawat Region Incorporating The Local Physio-Climatic Parameters," International Journal of Agriculture & Sustainable Development, 50sea, vol. 3(2), pages 46-50, June.
    8. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    9. Venot, Jean-Philippe & Sharma, Bharat R. & Rao, Kamineni V.G.K., 2008. "The Lower Krishna Basin Trajectory: Relationships between Basin Development and Downstream Environmental Degradation," IWMI Research Reports 44515, International Water Management Institute.
    10. Alcon, Francisco & Zabala, José A. & Martínez-García, Victor & Albaladejo, José A. & López-Becerra, Erasmo I. & de-Miguel, María D. & Martínez-Paz, José M., 2022. "The social wellbeing of irrigation water. A demand-side integrated valuation in a Mediterranean agroecosystem," Agricultural Water Management, Elsevier, vol. 262(C).
    11. Duarte, Rosa & Pinilla, Vicente & Serrano, Ana, 2014. "The water footprint of the Spanish agricultural sector: 1860–2010," Ecological Economics, Elsevier, vol. 108(C), pages 200-207.
    12. de Fraiture, Charlotte & Molden, David & Wichelns, Dennis, 2010. "Investing in water for food, ecosystems, and livelihoods: An overview of the comprehensive assessment of water management in agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 495-501, April.
    13. Ayben Polat Bulut, 2023. "Determining the water footprint of sunflower in Turkey and creating digital maps for sustainable agricultural water management," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11999-12010, October.
    14. Nabahungu, N.L. & Visser, S.M., 2011. "Contribution of wetland agriculture to farmers' livelihood in Rwanda," Ecological Economics, Elsevier, vol. 71(C), pages 4-12.
    15. de Fraiture, Charlotte & Giordano, Meredith, 2014. "Small private irrigation: A thriving but overlooked sector," Agricultural Water Management, Elsevier, vol. 131(C), pages 167-174.
    16. de Fraiture, Charlotte & Wichelns, Dennis, 2010. "Satisfying future water demands for agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 502-511, April.
    17. Turral, Hugh & Svendsen, Mark & Faures, Jean Marc, 2010. "Investing in irrigation: Reviewing the past and looking to the future," Agricultural Water Management, Elsevier, vol. 97(4), pages 551-560, April.
    18. Mengran Fu & Bin Guo & Weijiao Wang & Juan Wang & Lihua Zhao & Jianlin Wang, 2019. "Comprehensive Assessment of Water Footprints and Water Scarcity Pressure for Main Crops in Shandong Province, China," Sustainability, MDPI, vol. 11(7), pages 1-18, March.
    19. Bocchiola, D., 2015. "Impact of potential climate change on crop yield and water footprint of rice in the Po valley of Italy," Agricultural Systems, Elsevier, vol. 139(C), pages 223-237.
    20. Nangia, V. & de Fraiture, C. & Turral, H., 2008. "Water quality implications of raising crop water productivity," Agricultural Water Management, Elsevier, vol. 95(7), pages 825-835, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:296:y:2024:i:c:s0378377424001227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.