IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v287y2023ics0378377423002755.html
   My bibliography  Save this article

WHCrop: A novel water-heat driven crop model for estimating the spatiotemporal dynamics of crop growth for arid region

Author

Listed:
  • He, Liuyue
  • Xue, Jingyuan
  • Wang, Sufen

Abstract

Crop models are widely used to assist in agricultural management decision-making and water productivity optimization. However, traditional crop models often depend on artificial and specific field management inputs, posing challenges in maintaining crops within a desired stress range. Consequently, the derived optimization schemes from these models become highly uncertain. Moreover, the complexity of the mechanisms involved and the multitude of parameters make it challenging to apply traditional crop models uniformly across various crops and regions. In this study, we have developed a novel crop model called WHCrop (Water-Heat Driven Crop model) that effectively captures, reflects, and controls the impact of various environmental factors (meteorology, topography, soil, and management) on crop growth process. The WHCrop model combines the simulation principles of biomass and yield from the CERES module in the DSSAT model, along with the soil water balance from the AquaCrop model, to estimate the dynamics of crop growth and production processes. Results indicated that WHCrop-based simulations, including canopy cover (CC), daily evapotranspiration (ET), and yield, matched well with ground-based measurements, and were better than the traditional crop model (DSSAT and AquaCrop) at both field and regional scales, especially under deficient irrigation conditions. Besides capturing the key variables associated with crop growth, WHCrop model could reproduce the adaptive response of these various to regional-scale temperature changes. Notably, the WHCrop model could effectively minimize uncertainties resulting from individual environmental change, thanks its incorporation of dynamic response mechanisms for crop growth under stress factors. Overall, the novel and informative WHCrop model offers some advantages over traditional crop models since it allows for optimal decision making to be derived from the randomly different inputs. As a result, the WHCrop model proves instrumental in assisting decision-makers in formulating critical water allocation strategies and developing effective management recommendations to enhance regional agricultural water productivity.

Suggested Citation

  • He, Liuyue & Xue, Jingyuan & Wang, Sufen, 2023. "WHCrop: A novel water-heat driven crop model for estimating the spatiotemporal dynamics of crop growth for arid region," Agricultural Water Management, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:agiwat:v:287:y:2023:i:c:s0378377423002755
    DOI: 10.1016/j.agwat.2023.108410
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423002755
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108410?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bing Liu & Senthold Asseng & Christoph Müller & Frank Ewert & Joshua Elliott & David B. Lobell & Pierre Martre & Alex C. Ruane & Daniel Wallach & James W. Jones & Cynthia Rosenzweig & Pramod K. Aggarw, 2016. "Similar estimates of temperature impacts on global wheat yield by three independent methods," Nature Climate Change, Nature, vol. 6(12), pages 1130-1136, December.
    2. Shi, Rongchao & Wang, Jintao & Tong, Ling & Du, Taisheng & Shukla, Manoj Kumar & Jiang, Xuelian & Li, Donghao & Qin, Yonghui & He, Liuyue & Bai, Xiaorui & Guo, Xiaoxu, 2022. "Optimizing planting density and irrigation depth of hybrid maize seed production under limited water availability," Agricultural Water Management, Elsevier, vol. 271(C).
    3. Balkovič, Juraj & van der Velde, Marijn & Schmid, Erwin & Skalský, Rastislav & Khabarov, Nikolay & Obersteiner, Michael & Stürmer, Bernhard & Xiong, Wei, 2013. "Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation," Agricultural Systems, Elsevier, vol. 120(C), pages 61-75.
    4. Gallardo, Marisa & Elia, Antonio & Thompson, Rodney B., 2020. "Decision support systems and models for aiding irrigation and nutrient management of vegetable crops," Agricultural Water Management, Elsevier, vol. 240(C).
    5. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Tong, Ling & Ding, Risheng & Du, Taisheng & Li, Sien & Zhang, Xiaotao, 2017. "Performance of AquaCrop and SIMDualKc models in evapotranspiration partitioning on full and deficit irrigated maize for seed production under plastic film-mulch in an arid region of China," Agricultural Systems, Elsevier, vol. 151(C), pages 20-32.
    6. Sebastian Kloss & Raji Pushpalatha & Kefasi Kamoyo & Niels Schütze, 2012. "Evaluation of Crop Models for Simulating and Optimizing Deficit Irrigation Systems in Arid and Semi-arid Countries Under Climate Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(4), pages 997-1014, March.
    7. He, Jianqiang & Dukes, Michael D. & Hochmuth, George J. & Jones, James W. & Graham, Wendy D., 2012. "Identifying irrigation and nitrogen best management practices for sweet corn production on sandy soils using CERES-Maize model," Agricultural Water Management, Elsevier, vol. 109(C), pages 61-70.
    8. Yang, Jian & Mao, Xiaomin & Wang, Kai & Yang, Weicai, 2018. "The coupled impact of plastic film mulching and deficit irrigation on soil water/heat transfer and water use efficiency of spring wheat in Northwest China," Agricultural Water Management, Elsevier, vol. 201(C), pages 232-245.
    9. Lu, Yang & Chibarabada, Tendai P. & Ziliani, Matteo G. & Onema, Jean-Marie Kileshye & McCabe, Matthew F. & Sheffield, Justin, 2021. "Assimilation of soil moisture and canopy cover data improves maize simulation using an under-calibrated crop model," Agricultural Water Management, Elsevier, vol. 252(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Zelm, Rosalie & van der Velde, Marijn & Balkovic, Juraj & Čengić, Mirza & Elshout, Pieter M.F. & Koellner, Thomas & Núñez, Montserrat & Obersteiner, Michael & Schmid, Erwin & Huijbregts, Mark A.J., 2018. "Spatially explicit life cycle impact assessment for soil erosion from global crop production," Ecosystem Services, Elsevier, vol. 30(PB), pages 220-227.
    2. Bao, Yawen & Hoogenboom, Gerrit & McClendon, Ron & Vellidis, George, 2017. "A comparison of the performance of the CSM-CERES-Maize and EPIC models using maize variety trial data," Agricultural Systems, Elsevier, vol. 150(C), pages 109-119.
    3. Campana, P.E. & Lastanao, P. & Zainali, S. & Zhang, J. & Landelius, T. & Melton, F., 2022. "Towards an operational irrigation management system for Sweden with a water–food–energy nexus perspective," Agricultural Water Management, Elsevier, vol. 271(C).
    4. Zhang, Wang & Tian, Yong & Sun, Zan & Zheng, Chunmiao, 2021. "How does plastic film mulching affect crop water productivity in an arid river basin?," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Li, Jiang & Song, Jian & Li, Mo & Shang, Songhao & Mao, Xiaomin & Yang, Jian & Adeloye, Adebayo J., 2018. "Optimization of irrigation scheduling for spring wheat based on simulation-optimization model under uncertainty," Agricultural Water Management, Elsevier, vol. 208(C), pages 245-260.
    6. Qian Li & Yan Chen & Shikun Sun & Muyuan Zhu & Jing Xue & Zihan Gao & Jinfeng Zhao & Yihe Tang, 2022. "Research on Crop Irrigation Schedules Under Deficit Irrigation—A Meta-analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4799-4817, September.
    7. Yunfeng Li & Quanqing Feng & Dongwei Li & Mingfa Li & Huifeng Ning & Qisheng Han & Abdoul Kader Mounkaila Hamani & Yang Gao & Jingsheng Sun, 2022. "Water-Salt Thresholds of Cotton ( Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    8. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    9. Wu, Lihong & Quan, Hao & Wu, Lina & Zhang, Xi & Feng, Hao & Ding, Dianyuan & Siddique, Kadambot H.M., 2023. "Responses of winter wheat yield and water productivity to sowing time and plastic mulching in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 289(C).
    10. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    11. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    12. Mitter, Hermine & Schmid, Erwin, 2019. "Computing the economic value of climate information for water stress management exemplified by crop production in Austria," Agricultural Water Management, Elsevier, vol. 221(C), pages 430-448.
    13. Dono, Gabriele & Cortignani, Raffaele & Giraldo, Luca & Doro, Luca & Roggero, Pier Paolo, 2014. "Assessing the awareness of climate change as a factor of adaptation in the agricultural sector," 2014 Third Congress, June 25-27, 2014, Alghero, Italy 173110, Italian Association of Agricultural and Applied Economics (AIEAA).
    14. Xiong, Wei & Balkovič, Juraj & van der Velde, Marijn & Zhang, Xuesong & Izaurralde, R. César & Skalský, Rastislav & Lin, Erda & Mueller, Nathan & Obersteiner, Michael, 2014. "A calibration procedure to improve global rice yield simulations with EPIC," Ecological Modelling, Elsevier, vol. 273(C), pages 128-139.
    15. Wang, Weishu & Rong, Yao & Zhang, Chenglong & Wang, Chaozi & Huo, Zailin, 2024. "Data assimilation of soil moisture and leaf area index effectively improves the simulation accuracy of water and carbon fluxes in coupled farmland hydrological model," Agricultural Water Management, Elsevier, vol. 291(C).
    16. So Pyay Thar & Thiagarajah Ramilan & Robert J. Farquharson & Deli Chen, 2021. "Identifying Potential for Decision Support Tools through Farm Systems Typology Analysis Coupled with Participatory Research: A Case for Smallholder Farmers in Myanmar," Agriculture, MDPI, vol. 11(6), pages 1-20, June.
    17. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).
    18. Luo, Li & Sun, Shikun & Xue, Jing & Gao, Zihan & Zhao, Jinfeng & Yin, Yali & Gao, Fei & Luan, Xiaobo, 2023. "Crop yield estimation based on assimilation of crop models and remote sensing data: A systematic evaluation," Agricultural Systems, Elsevier, vol. 210(C).
    19. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    20. Hao, Baozhen & Ma, Jingli & Si, Shihua & Wang, Xiaojie & Wang, Shuli & Li, Fengmei & Jiang, Lina, 2024. "Response of grain yield and water productivity to plant density in drought-tolerant maize cultivar under irrigated and rainfed conditions," Agricultural Water Management, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:287:y:2023:i:c:s0378377423002755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.