IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v146y2014icp346-360.html
   My bibliography  Save this article

Sustainability and environmental assessment of fertigation in an intensive olive grove under Mediterranean conditions

Author

Listed:
  • Cameira, M.R.
  • Pereira, A.
  • Ahuja, L.
  • Ma, L.

Abstract

Water and nitrogen surpluses are major concern for the new intensive olive groves in South of Portugal. In this study, field measurements were integrated with a system model, Root Zone Water Quality Model (RZWQM2) to assess the sustainability and environmental impact of fertigation in an intensive olive grove (Olea europaea L. var. Arbequina). The model provided acceptable predictions of evapotranspiration, soil moisture and nitrate contents. Based on model simulations, under current fertigation practices, 57% of the irrigation applied was lost via drainage, while 71% and 5% of fertilizer N inputs were lost through leaching and denitrification, respectively. The non-fertilizer N input from soil organic matter (OM) satisfied 64% of the crop N needs. The tested model was used to predict the impacts of a full irrigation (FIFC) and two regulated deficit irrigation schemes (RDI75, RDI50) on drainage and N leaching. In FIFC the atmospheric demand was met while the application frequency maintained the water storage below the soil field capacity. In RDI75 and RDI50 the irrigation application amount between stone hardening and onset of ripening was 75 and 50% of FIFC respectively.

Suggested Citation

  • Cameira, M.R. & Pereira, A. & Ahuja, L. & Ma, L., 2014. "Sustainability and environmental assessment of fertigation in an intensive olive grove under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 146(C), pages 346-360.
  • Handle: RePEc:eee:agiwat:v:146:y:2014:i:c:p:346-360
    DOI: 10.1016/j.agwat.2014.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414002789
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gardenas, A.I. & Hopmans, J.W. & Hanson, B.R. & Simunek, J., 2005. "Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation," Agricultural Water Management, Elsevier, vol. 74(3), pages 219-242, June.
    2. Er-Raki, S. & Chehbouni, A. & Boulet, G. & Williams, D.G., 2010. "Using the dual approach of FAO-56 for partitioning ET into soil and plant components for olive orchards in a semi-arid region," Agricultural Water Management, Elsevier, vol. 97(11), pages 1769-1778, November.
    3. Cameira, M.R. & Fernando, R.M. & Ahuja, L.R. & Ma, L., 2007. "Using RZWQM to simulate the fate of nitrogen in field soil-crop environment in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 121-136, May.
    4. Ramos, Alice F. & Santos, Francisco L., 2010. "Yield and olive oil characteristics of a low-density orchard (cv. Cordovil) subjected to different irrigation regimes," Agricultural Water Management, Elsevier, vol. 97(2), pages 363-373, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Gomes & Tânia Nobre & Adélia Sousa & Fernando Rei & Nuno Guiomar, 2020. "Hyperspectral Reflectance as a Basis to Discriminate Olive Varieties—A Tool for Sustainable Crop Management," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
    2. Ramos, Tiago B. & Darouich, Hanaa & Šimůnek, Jiří & Gonçalves, Maria C. & Martins, José C., 2019. "Soil salinization in very high-density olive orchards grown in southern Portugal: Current risks and possible trends," Agricultural Water Management, Elsevier, vol. 217(C), pages 265-281.
    3. José Rato-Nunes & José Telo-da-Gama & David Peña & Luís Loures & Angel Albaran & Damian Fernández-Rodríguez & Luis Vicente & António López-Piñeiro, 2024. "Hedgerow Olive Orchards versus Traditional Olive Orchards: Impact on Selected Soil Chemical Properties," Agriculture, MDPI, vol. 14(2), pages 1-19, February.
    4. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    5. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Alexandre, Carlos & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use, soil water balance and soil salinization risks of Mediterranean tree orchards in southern Portugal under current climate variability: Issues for salinity control and irrigation management," Agricultural Water Management, Elsevier, vol. 283(C).
    6. Ortega-Reig, M. & Sanchis-Ibor, C. & Palau-Salvador, G. & García-Mollá, M. & Avellá-Reus, L., 2017. "Institutional and management implications of drip irrigation introduction in collective irrigation systems in Spain," Agricultural Water Management, Elsevier, vol. 187(C), pages 164-172.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chehab, Hechmi & Tekaya, Mariem & Mechri, Beligh & Jemai, Abdelmajid & Guiaa, Mohamed & Mahjoub, Zoubeir & Boujnah, Dalenda & Laamari, Salwa & Chihaoui, Badreddine & Zakhama, Houda & Hammami, Mohamed , 2017. "Effect of the Super Absorbent Polymer Stockosorb® on leaf turgor pressure, tree performance and oil quality of olive trees cv. Chemlali grown under field conditions in an arid region of Tunisia," Agricultural Water Management, Elsevier, vol. 192(C), pages 221-231.
    2. Phogat, V. & Skewes, M.A. & Cox, J.W. & Alam, J. & Grigson, G. & Šimůnek, J., 2013. "Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree," Agricultural Water Management, Elsevier, vol. 127(C), pages 74-84.
    3. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    4. Shahadha, Saadi Sattar & Wendroth, Ole & Zhu, Junfeng & Walton, Jason, 2019. "Can measured soil hydraulic properties simulate field water dynamics and crop production?," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    5. Mubarak, Ibrahim & Mailhol, Jean Claude & Angulo-Jaramillo, Rafael & Bouarfa, Sami & Ruelle, Pierre, 2009. "Effect of temporal variability in soil hydraulic properties on simulated water transfer under high-frequency drip irrigation," Agricultural Water Management, Elsevier, vol. 96(11), pages 1547-1559, November.
    6. Cameira, M.R. & Rolim, João & Valente, Fernanda & Faro, Afonso & Dragosits, Ulrike & Cordovil, Cláudia M.d.S., 2019. "Spatial distribution and uncertainties of nitrogen budgets for agriculture in the Tagus river basin in Portugal – Implications for effectiveness of mitigation measures," Land Use Policy, Elsevier, vol. 84(C), pages 278-293.
    7. Elfarkh, Jamal & Simonneaux, Vincent & Jarlan, Lionel & Ezzahar, Jamal & Boulet, Gilles & Chakir, Adnane & Er-Raki, Salah, 2022. "Evapotranspiration estimates in a traditional irrigated area in semi-arid Mediterranean. Comparison of four remote sensing-based models," Agricultural Water Management, Elsevier, vol. 270(C).
    8. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    9. Wang, Xiangping & Huang, Guanhua, 2008. "Evaluation on the irrigation and fertilization management practices under the application of treated sewage water in Beijing, China," Agricultural Water Management, Elsevier, vol. 95(9), pages 1011-1027, September.
    10. Morillo, J. García & Martín, M. & Camacho, E. & Díaz, J.A. Rodríguez & Montesinos, P., 2015. "Toward precision irrigation for intensive strawberry cultivation," Agricultural Water Management, Elsevier, vol. 151(C), pages 43-51.
    11. Aouade, G. & Ezzahar, J. & Amenzou, N. & Er-Raki, S. & Benkaddour, A. & Khabba, S. & Jarlan, L., 2016. "Combining stable isotopes, Eddy Covariance system and meteorological measurements for partitioning evapotranspiration, of winter wheat, into soil evaporation and plant transpiration in a semi-arid reg," Agricultural Water Management, Elsevier, vol. 177(C), pages 181-192.
    12. Amazirh, Abdelhakim & Merlin, Olivier & Er-Raki, Salah & Bouras, Elhoussaine & Chehbouni, Abdelghani, 2021. "Implementing a new texture-based soil evaporation reduction coefficient in the FAO dual crop coefficient method," Agricultural Water Management, Elsevier, vol. 250(C).
    13. Phogat, V. & Skewes, Mark A. & Mahadevan, M. & Cox, J.W., 2013. "Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 1-11.
    14. Liao, Renkuan & Wu, Wenyong & Hu, Yaqi & Xu, Di & Huang, Qiannan & Wang, Shiyu, 2019. "Micro-irrigation strategies to improve water-use efficiency of cherry trees in Northern China," Agricultural Water Management, Elsevier, vol. 221(C), pages 388-396.
    15. Lu, Junsheng & Hu, Tiantian & Geng, Chenming & Cui, Xiaolu & Fan, Junliang & Zhang, Fucang, 2021. "Response of yield, yield components and water-nitrogen use efficiency of winter wheat to different drip fertigation regimes in Northwest China," Agricultural Water Management, Elsevier, vol. 255(C).
    16. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    17. Wang, Zhen & Li, Jiusheng & Li, Yanfeng, 2014. "Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 142(C), pages 19-28.
    18. Luis Gomes & Tânia Nobre & Adélia Sousa & Fernando Rei & Nuno Guiomar, 2020. "Hyperspectral Reflectance as a Basis to Discriminate Olive Varieties—A Tool for Sustainable Crop Management," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
    19. Ahumada-Orellana, Luis E. & Ortega-Farías, Samuel & Searles, Peter S., 2018. "Olive oil quality response to irrigation cut-off strategies in a super-high density orchard," Agricultural Water Management, Elsevier, vol. 202(C), pages 81-88.
    20. Che, Zheng & Wang, Jun & Li, Jiusheng, 2022. "Modeling strategies to balance salt leaching and nitrogen loss for drip irrigation with saline water in arid regions," Agricultural Water Management, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:146:y:2014:i:c:p:346-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.