IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v143y2014icp29-37.html
   My bibliography  Save this article

Basal crop coefficients for vine and erect crops with plastic mulch in a sub-tropical region

Author

Listed:
  • Shrestha, N.K.
  • Shukla, S.

Abstract

Dual crop coefficient approach of partitioning evapotranspiration (ETc) into transpiration (T) and evaporation (E) has been used extensively for applications ranging from estimating crop water allocations to irrigation scheduling. Although the basal crop coefficient (Kcb) provides an improved estimate of T, variations in Kcb are still possible due to variations in climate and management practices necessitating the development of regional Kcb. Large drainage lysimeters (4.87m×3.65m×1.37m) were used to develop Kcb for drip irrigated bell pepper and watermelon with plastic mulch in sub-tropical Florida using four and three seasons of data, respectively. The average Kcb values for the initial, mid-season, and late stages were 0.12, 0.68, and 0.77, respectively, for bell pepper, and 0.05, 0.96, and 0.66 for watermelon. The Kcb values for pepper from this study were statistically lower (p=0.047) than the generic FAO-56 values (adjusted for mulch and plant density) and improved the estimates of T and E by 27.3 and 7%, respectively. Although lysimeter Kcb values for watermelon were numerically lower than FAO-56, no statistical difference was detected. However, FAO-56 overestimated watermelon E by 52%. The lysimeter-based Kcb improved the ETc estimate and this improvement was 26 and 51% of the respective seasonal rainfall for pepper and watermelon. When extrapolated to all drip irrigated pepper acreage in Florida, the Kcb from this study could potentially reduce the applied water by some 6.9millionm3 of water compared to using FAO-56 Kcb, highlighting the importance of accurate estimation of ETc for the irrigation management. The improved Kcb will help customize the irrigation management and reduce nutrient leaching as well as improve simulations of ETc within the hydrologic models for similar environment

Suggested Citation

  • Shrestha, N.K. & Shukla, S., 2014. "Basal crop coefficients for vine and erect crops with plastic mulch in a sub-tropical region," Agricultural Water Management, Elsevier, vol. 143(C), pages 29-37.
  • Handle: RePEc:eee:agiwat:v:143:y:2014:i:c:p:29-37
    DOI: 10.1016/j.agwat.2014.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414001619
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lovelli, S. & Pizza, S. & Caponio, T. & Rivelli, A.R. & Perniola, M., 2005. "Lysimetric determination of muskmelon crop coefficients cultivated under plastic mulches," Agricultural Water Management, Elsevier, vol. 72(2), pages 147-159, March.
    2. Amayreh, Jumah & Al-Abed, Nassim, 2005. "Developing crop coefficients for field-grown tomato (Lycopersicon esculentum Mill.) under drip irrigation with black plastic mulch," Agricultural Water Management, Elsevier, vol. 73(3), pages 247-254, May.
    3. Miranda, F.R. & Gondim, R.S. & Costa, C.A.G., 2006. "Evapotranspiration and crop coefficients for tabasco pepper (Capsicum frutescens L.)," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 237-246, April.
    4. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    5. Shukla, S. & Shrestha, N.K. & Jaber, F.H. & Srivastava, S. & Obreza, T.A. & Boman, B.J., 2014. "Evapotranspiration and crop coefficient for watermelon grown under plastic mulched conditions in sub-tropical Florida," Agricultural Water Management, Elsevier, vol. 132(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaneko, Teruko & Gould, Nick & Campbell, David & Snelgar, Patrick & Clearwater, Michael J., 2022. "The effect of soil type, fruit load and shaded area on ‘Hass’ avocado (Persea americana Mill.) water use and crop coefficients," Agricultural Water Management, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Pengju & Hu, Hongchang & Tian, Fuqiang & Zhang, Zhi & Dai, Chao, 2016. "Crop coefficient for cotton under plastic mulch and drip irrigation based on eddy covariance observation in an arid area of northwestern China," Agricultural Water Management, Elsevier, vol. 171(C), pages 21-30.
    2. Shukla, S. & Shrestha, N.K. & Jaber, F.H. & Srivastava, S. & Obreza, T.A. & Boman, B.J., 2014. "Evapotranspiration and crop coefficient for watermelon grown under plastic mulched conditions in sub-tropical Florida," Agricultural Water Management, Elsevier, vol. 132(C), pages 1-9.
    3. Zhang, Xinmin & Hu, Lin & Bian, Xiuju & Zhao, Bingxiang & Chai, Fahe & Sun, Xinzhang, 2007. "The most economical irrigation amount and evapotranspiration of the turfgrasses in Beijing City, China," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 98-104, April.
    4. Filipović, Vilim & Romić, Davor & Romić, Marija & Borošić, Josip & Filipović, Lana & Mallmann, Fábio Joel Kochem & Robinson, David A., 2016. "Plastic mulch and nitrogen fertigation in growing vegetables modify soil temperature, water and nitrate dynamics: Experimental results and a modeling study," Agricultural Water Management, Elsevier, vol. 176(C), pages 100-110.
    5. Pereira, L.S. & Paredes, P. & López-Urrea, R. & Hunsaker, D.J. & Mota, M. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach," Agricultural Water Management, Elsevier, vol. 243(C).
    6. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    7. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    8. Katerji, Nader & Campi, Pasquale & Mastrorilli, Marcello, 2013. "Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 130(C), pages 14-26.
    9. Liang, Jiaping & Shi, Wenjuan & He, Zijian & Pang, Linna & Zhang, Yanchao, 2019. "Effects of poly-γ-glutamic acid on water use efficiency, cotton yield, and fiber quality in the sandy soil of southern Xinjiang, China," Agricultural Water Management, Elsevier, vol. 218(C), pages 48-59.
    10. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    12. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    13. Palatnik, Ruslana & Shechter, Mordechai, 2008. "Can Climate Change Mitigation Policy be Beneficial for the Israeli Economy? A Computable General Equilibrium Analysis," Conference papers 331792, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    15. Guangming Yang & Guofang Gong & Qingqing Gui, 2022. "Exploring the Spatial Network Structure of Agricultural Water Use Efficiency in China: A Social Network Perspective," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    16. Haiming Yan & Jinyan Zhan & Bing Liu & Yongwei Yuan, 2014. "Model Estimation of Water Use Efficiency for Soil Conservation in the Lower Heihe River Basin, Northwest China during 2000–2008," Sustainability, MDPI, vol. 6(9), pages 1-17, September.
    17. Gao, Hongchao & Wei, Tong & Lou, Inchio & Yang, Zhifeng & Shen, Zhenyao & Li, Yingxia, 2014. "Water saving effect on integrated water resource management," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 50-58.
    18. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    19. Xue, Jingyuan & Guan, Huade & Huo, Zailin & Wang, Fengxin & Huang, Guanhua & Boll, Jan, 2017. "Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 194(C), pages 78-89.
    20. Guoqiang Zhang & Bo Ming & Dongping Shen & Ruizhi Xie & Peng Hou & Jun Xue & Keru Wang & Shaokun Li, 2021. "Optimizing Grain Yield and Water Use Efficiency Based on the Relationship between Leaf Area Index and Evapotranspiration," Agriculture, MDPI, vol. 11(4), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:143:y:2014:i:c:p:29-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.