IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v244y2021ics037837742032120x.html
   My bibliography  Save this article

Variation of soil moisture and fine roots distribution adopts rainwater collection, infiltration promoting and soil anti-seepage system (RCIP-SA) in hilly apple orchard on the Loess Plateau of China

Author

Listed:
  • Guo, Fu-Xing
  • Wang, Yan-Ping
  • Hou, Ting-Ting
  • Zhang, Lin-Sen
  • Mu, Yan
  • Wu, Fu-yong

Abstract

Improving the utilization efficiency of rainwater resources was a key issue for apple orchards in semi-arid areas. The RCIP-SA system combined rainwater collection systems, infiltration promoting tube and soil anti-seepage layer to gather limited rainwater resources into the soil layer where the roots of apple tree were concentrated. To evaluate the effect of the RCIP-SA system on soil moisture change and fine root distribution, a field experiment was completed in a hilly apple orchard on the Loess Plateau of China from 2017 to 2019. The results showed that the soil moisture of the RCIP-SA system was 24.0–43.9% higher than CK in the 0–60 cm soil layer in the rainwater collection ditch, and generated a larger area with higher moisture content near the impermeable layer during the apple tree growth period. The RCIP-SA system also expanded the dense distribution zone of apple tree roots. The dry fine root densities of apple trees in the RCIP-SA system in the 0–200 cm soil layer was 11.7–59.6% and 18.2–30.3% higher than CK under the plastic film (60 cm from the trunk) and edge of the rainwater collection ditch (100 cm from the trunk), respectively. Soil moisture and root distribution of apple trees were significantly different under different impermeable layers, and compacted red clay as the impermeable layer was the best anti-seepage strategy in RCIP-SA systems. The RCIP-SA system brought higher economic benefits; the average yield per tree was recorded for red clay compaction treatment (38.1 kg·tree−1), equating to a production level of 22 800 kg·ha−1, and a difference of 9.6 kg·tree−1 with CK treatment, equating to 5700 kg·ha−1. This strategy should be recommended as an agricultural measurement for apple production on the Loess Plateau of China.

Suggested Citation

  • Guo, Fu-Xing & Wang, Yan-Ping & Hou, Ting-Ting & Zhang, Lin-Sen & Mu, Yan & Wu, Fu-yong, 2021. "Variation of soil moisture and fine roots distribution adopts rainwater collection, infiltration promoting and soil anti-seepage system (RCIP-SA) in hilly apple orchard on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:agiwat:v:244:y:2021:i:c:s037837742032120x
    DOI: 10.1016/j.agwat.2020.106573
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742032120X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Faci, J.M. & Blanco, O. & Medina, E.T. & Martínez-Cob, A., 2014. "Effect of post veraison regulated deficit irrigation in production and berry quality of Autumn Royal and Crimson table grape cultivars," Agricultural Water Management, Elsevier, vol. 134(C), pages 73-83.
    2. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    3. Sahrawat, K.L. & Wani, S.P. & Pathak, P. & Rego, T.J., 2010. "Managing natural resources of watersheds in the semi-arid tropics for improved soil and water quality: A review," Agricultural Water Management, Elsevier, vol. 97(3), pages 375-381, March.
    4. Shemdoe, R.S. & Van Damme, P. & Kikula, I.S., 2009. "Increasing crop yield in water scarce environments using locally available materials: An experience from semi-arid areas in Mpwapwa District, central Tanzania," Agricultural Water Management, Elsevier, vol. 96(6), pages 963-968, June.
    5. Huang, Mingbin & Gallichand, Jacques, 2006. "Use of the SHAW model to assess soil water recovery after apple trees in the gully region of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 67-76, September.
    6. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2014. "Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 146(C), pages 45-56.
    7. Hussain, M. Iftikhar & Muscolo, Adele & Farooq, Muhammad & Ahmad, Waqar, 2019. "Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments," Agricultural Water Management, Elsevier, vol. 221(C), pages 462-476.
    8. Song, Xiaolin & Gao, Xiaodong & Zhao, Xining & Wu, Pute & Dyck, Miles, 2017. "Spatial distribution of soil moisture and fine roots in rain-fed apple orchards employing a Rainwater Collection and Infiltration (RWCI) system on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 184(C), pages 170-177.
    9. Zhong, Yun & Fei, Liangjun & Li, Yibo & Zeng, Jian & Dai, Zhiguang, 2019. "Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 222(C), pages 221-230.
    10. Sokalska, D.I. & Haman, D.Z. & Szewczuk, A. & Sobota, J. & Deren, D., 2009. "Spatial root distribution of mature apple trees under drip irrigation system," Agricultural Water Management, Elsevier, vol. 96(6), pages 917-924, June.
    11. Qadir, M. & Wichelns, D. & Raschid-Sally, L. & McCornick, P.G. & Drechsel, P. & Bahri, A. & Minhas, P.S., 2010. "The challenges of wastewater irrigation in developing countries," Agricultural Water Management, Elsevier, vol. 97(4), pages 561-568, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Chenghao & Wang, Ruoshui & Zhou, Xuan & Li, Chaonan & Dou, Xiaoyu, 2022. "Photosynthetic and growth characteristics of apple and soybean in an intercropping system under different mulch and irrigation regimes in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 266(C).
    2. Zhang, Binbin & Hu, Yajin & Hill, Robert Lee & Wu, Shufang & Song, Xiaolin, 2021. "Combined effects of biomaterial amendments and rainwater harvesting on soil moisture, structure and apple roots in a rainfed apple orchard on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 248(C).
    3. Cai, Yaohui & Wu, Pute & Gao, Xiaodong & Zhu, Delan & Zhang, Lin & Dai, Zhiguang & Chau, Henry Wai & Zhao, Xining, 2022. "Subsurface irrigation with ceramic emitters: Evaluating soil water effects under multiple precipitation scenarios," Agricultural Water Management, Elsevier, vol. 272(C).
    4. Wang, Jiaxin & He, Xinlin & Gong, Ping & Heng, Tong & Zhao, Danqi & Wang, Chunxia & Chen, Quan & Wei, Jie & Lin, Ping & Yang, Guang, 2024. "Response of fragrant pear quality and water productivity to lateral depth and irrigation amount," Agricultural Water Management, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liao, Yang & Cao, Hong-Xia & Xue, Wen-Kai & Liu, Xing, 2021. "Effects of the combination of mulching and deficit irrigation on the soil water and heat, growth and productivity of apples," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Liao, Yang & Cao, Hong-Xia & Liu, Xing & Li, Huang-Tao & Hu, Qing-Yang & Xue, Wen-Kai, 2021. "By increasing infiltration and reducing evaporation, mulching can improve the soil water environment and apple yield of orchards in semiarid areas," Agricultural Water Management, Elsevier, vol. 253(C).
    3. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    4. Zhang, Binbin & Su, Shunshun & Duan, Chenxiao & Feng, Hao & Chau, Henry Wai & He, Jianqiang & Li, Yi & Hill, Robert Lee & Wu, Shufang & Zou, Yufeng, 2022. "Effects of partial organic fertilizer replacement combined with rainwater collection system on soil water, nitrate-nitrogen and apple yield of rainfed apple orchard in the Loess Plateau of China: A 3-," Agricultural Water Management, Elsevier, vol. 260(C).
    5. Nicoleta Ungureanu & Valentin Vlăduț & Gheorghe Voicu, 2020. "Water Scarcity and Wastewater Reuse in Crop Irrigation," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    6. Zhang, Binbin & Yan, Sihui & Li, Bin & Wu, Shufang & Feng, Hao & Gao, Xiaodong & Song, Xiaolin & Siddique, Kadambot H.M., 2023. "Combining organic and chemical fertilizer plus water-saving system reduces environmental impacts and improves apple yield in rainfed apple orchards," Agricultural Water Management, Elsevier, vol. 288(C).
    7. Ding, Wenbin & Wang, Fei & Dong, Yunyun & Jin, Kai & Cong, Chenyu & Han, Jianqiao & Ge, Wenyan, 2021. "Effects of rainwater harvesting system on soil moisture in rain-fed orchards on the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Di Wang, & Wang, Li, 2023. "Characteristics of soil evaporation at two stages of growth in apple orchards with different ages in a semi-humid region," Agricultural Water Management, Elsevier, vol. 280(C).
    9. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    10. He, Zijian & Hu, Qingyang & Zhang, Yi & Cao, Hongxia & Nan, Xueping, 2023. "Effects of irrigation and nitrogen management strategies on soil nitrogen and apple yields in loess plateau of China," Agricultural Water Management, Elsevier, vol. 280(C).
    11. Giuliani, Nicola & Aguzzoni, Agnese & Penna, Daniele & Tagliavini, Massimo, 2023. "Estimating uptake and internal transport dynamics of irrigation water in apple trees using deuterium-enriched water," Agricultural Water Management, Elsevier, vol. 289(C).
    12. J. M. Aishwarya & R. Vidhya, 2023. "Study on the Efficiency of a Hydroponic Treatment for Removing Organic Loading from Wastewater and Its Application as a Nutrient for the “ Amaranthus campestris ” Plant for Sustainability," Sustainability, MDPI, vol. 15(10), pages 1-13, May.
    13. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    14. Lei Hua & Jianen Gao & Meifang Zhou & Shilun Bai, 2021. "Impacts of Relative Elevation on Soil Nutrients and Apple Quality in the Hilly-Gully Region of the Loess Plateau, China," Sustainability, MDPI, vol. 13(3), pages 1-11, January.
    15. Regmi, Rupesh & Zhang, Zhuo & Zhang, Hongpeng, 2023. "Entrepreneurship strategy, natural resources management and sustainable performance: A study of an emerging market," Resources Policy, Elsevier, vol. 86(PB).
    16. González-García, Alberto & Palomo, Ignacio & González, José A. & López, César A. & Montes, Carlos, 2020. "Quantifying spatial supply-demand mismatches in ecosystem services provides insights for land-use planning," Land Use Policy, Elsevier, vol. 94(C).
    17. Lecaros-Arellano, F. & Holzapfel, E. & Fereres, E. & Rivera, D. & Muñoz, N. & Jara, J., 2021. "Effects of the number of drip laterals on yield and quality of apples grown in two soil types," Agricultural Water Management, Elsevier, vol. 248(C).
    18. Ghalia Saleem Aljeddani, 2022. "Reusing Sewage Effluent in Greening Urban Areas: A Case Study of: Southern Jeddah, Saudi Arabia," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    19. Zijie Sang & Ge Zhang & Haiqing Wang & Wangyang Zhang & Yuxiu Chen & Mingyang Han & Ke Yang, 2023. "Effective Solutions to Ecological and Water Environment Problems in the Sanjiang Plain: Utilization of Farmland Drainage Resources," Sustainability, MDPI, vol. 15(23), pages 1-14, November.
    20. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:244:y:2021:i:c:s037837742032120x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.