IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i2p354-d129451.html
   My bibliography  Save this article

Irrigation Water Availability and Winter Wheat Abandonment in the North China Plain (NCP): Findings from a Case Study in Cangxian County of Hebei Province

Author

Listed:
  • Xue Wang

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Xiubin Li

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China)

Abstract

The North China Plain (NCP) is the major winter wheat producing area in China. Abandonment of this crop has, however, become more and more prevalent in this region since the late 1990s. Although the underlying causes of this phenomenon remain little understood, irrigation water availability (IWA) has always been regarded as the key factor limiting winter wheat production on the NCP. The aim of this paper is to determine the role played by IWA in the abandonment of winter wheat, using evidence drawn from a case study in Cangxian County, Hebei Province. First-hand data were collected for this study from 350 households in 35 villages, using semistructured one-on-one questionnaires. Five types of irrigation water sources were defined and identified at the level of individual land plots: “ground and surface water”, “just groundwater”, “just rivers”, “just reservoirs”, and “no irrigation”. These levels correspond to a decreasing trend in the overall frequency of irrigation and thus provide a clear proxy indicator for IWA. The results from a series of multilevel multinomial models show that the higher the IWA, the less likely it is for a land plot to abandon winter wheat. Specifically, using “no irrigation” cases as a control group, the results show that land plots with more sources of irrigation water also tend to be characterized by greater IWA, including “ground and surface water” and “just groundwater”, and also have lower probabilities of abandoning winter wheat. In contrast, land plots with less IWA (less irrigation water sources), including “just reservoirs” and “just rivers”, are more likely to abandon winter wheat. The results also show that, in addition to IWA, soil quality and plot size at the plot level, as well as demographic characteristics, farm equipment, and land fragmentation at the household level and irrigation prices at the village level, all play additional significant roles in the cropping-system decisions made by farmers. A number of suggestions are made in this paper regarding policy implementation related to integrative water management and transferred water reallocation, in order to achieve the twin goals of water conservation and winter wheat production on the NCP.

Suggested Citation

  • Xue Wang & Xiubin Li, 2018. "Irrigation Water Availability and Winter Wheat Abandonment in the North China Plain (NCP): Findings from a Case Study in Cangxian County of Hebei Province," Sustainability, MDPI, vol. 10(2), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:354-:d:129451
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/2/354/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/2/354/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tom Gleeson & Yoshihide Wada & Marc F. P. Bierkens & Ludovicus P. H. van Beek, 2012. "Water balance of global aquifers revealed by groundwater footprint," Nature, Nature, vol. 488(7410), pages 197-200, August.
    2. Yang, Yonghui & Watanabe, Masataka & Zhang, Xiying & Zhang, Jiqun & Wang, Qinxue & Hayashi, Seiji, 2006. "Optimizing irrigation management for wheat to reduce groundwater depletion in the piedmont region of the Taihang Mountains in the North China Plain," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 25-44, April.
    3. Sun, Hongyong & Shen, Yanjun & Yu, Qiang & Flerchinger, Gerald N. & Zhang, Yongqiang & Liu, Changming & Zhang, Xiying, 2010. "Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1139-1145, August.
    4. Su-Jong Jeong & Chang-Hoi Ho & Shilong Piao & Jinwon Kim & Philippe Ciais & Yun-Bok Lee & Jong-Ghap Jhun & Seon Ki Park, 2014. "Effects of double cropping on summer climate of the North China Plain and neighbouring regions," Nature Climate Change, Nature, vol. 4(7), pages 615-619, July.
    5. Overmars, Koen P. & Verburg, Peter H., 2006. "Multilevel modelling of land use from field to village level in the Philippines," Agricultural Systems, Elsevier, vol. 89(2-3), pages 435-456, September.
    6. Li, Jiamin & Inanaga, Shinobu & Li, Zhaohu & Eneji, A. Egrinya, 2005. "Optimizing irrigation scheduling for winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 76(1), pages 8-23, July.
    7. Wang, Jinxia & Yang, Yu & Huang, Jikun & Chen, Kevin, 2015. "Information provision, policy support, and farmers’ adaptive responses against drought: An empirical study in the North China Plain," Ecological Modelling, Elsevier, vol. 318(C), pages 275-282.
    8. Sun, Qinping & Kröbel, Roland & Müller, Torsten & Römheld, Volker & Cui, Zhenling & Zhang, Fusuo & Chen, Xinping, 2011. "Optimization of yield and water-use of different cropping systems for sustainable groundwater use in North China Plain," Agricultural Water Management, Elsevier, vol. 98(5), pages 808-814, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue Wang & Xiubin Li & Xingyuan Xiao & Limeng Fan & Lijun Zuo, 2022. "Changes in the Water-Energy Coupling Relationship in Grain Production: A Case Study of the North China Plain," IJERPH, MDPI, vol. 19(15), pages 1-13, August.
    2. Benyoh Emmanuel Kigha Nsafon & Sang-Chul Lee & Jeung-Soo Huh, 2020. "Responses of Yield and Protein Composition of Wheat to Climate Change," Agriculture, MDPI, vol. 10(3), pages 1-13, March.
    3. Yahui Wang & Liangjie Xin & Haozhe Zhang & Yuanqing Li, 2019. "An Estimation of the Extent of Rent-Free Farmland Transfer and Its Driving Forces in Rural China: A Multilevel Logit Model Analysis," Sustainability, MDPI, vol. 11(11), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Baodi & Shi, Lei & Shi, Changhai & Qiao, Yunzhou & Liu, Mengyu & Zhang, Zhengbin, 2011. "Grain yield and water use efficiency of two types of winter wheat cultivars under different water regimes," Agricultural Water Management, Elsevier, vol. 99(1), pages 103-110.
    2. Wang, Xiquan & Nie, Jiangwen & Wang, Peixin & Zhao, Jie & Yang, Yadong & Wang, Shang & Zeng, Zhaohai & Zang, Huadong, 2021. "Does the replacement of chemical fertilizer nitrogen by manure benefit water use efficiency of winter wheat – summer maize systems?," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Shirazi, Sana Zeeshan & Mei, Xurong & Liu, Buchun & Liu, Yuan, 2022. "Estimating potential yield and change in water budget for wheat and maize across Huang-Huai-Hai Plain in the future," Agricultural Water Management, Elsevier, vol. 260(C).
    4. Kaihua Liu & Xiyun Jiao & Weihua Guo & Yunhao An & Mohamed Khaled Salahou, 2020. "Improving border irrigation performance with predesigned varied-discharge," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-12, May.
    5. Liu, Bingxia & Wang, Shiqin & Kong, Xiaole & Liu, Xiaojing & Sun, Hongyong, 2019. "Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 98-110.
    6. Li, Hongjun & Zheng, Li & Lei, Yuping & Li, Chunqiang & Liu, Zhijun & Zhang, Shengwei, 2008. "Estimation of water consumption and crop water productivity of winter wheat in North China Plain using remote sensing technology," Agricultural Water Management, Elsevier, vol. 95(11), pages 1271-1278, November.
    7. Luo, Jianmei & Shen, Yanjun & Qi, Yongqing & Zhang, Yucui & Xiao, Dengpan, 2018. "Evaluating water conservation effects due to cropping system optimization on the Beijing-Tianjin-Hebei plain, China," Agricultural Systems, Elsevier, vol. 159(C), pages 32-41.
    8. Ren, Pinpin & Huang, Feng & Li, Baoguo, 2022. "Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction," Agricultural Water Management, Elsevier, vol. 263(C).
    9. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    10. Sun, Hongyong & Zhang, Xiying & Liu, Xiujing & Liu, Xiuwei & Shao, Liwei & Chen, Suying & Wang, Jintao & Dong, Xinliang, 2019. "Impact of different cropping systems and irrigation schedules on evapotranspiration, grain yield and groundwater level in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 202-209.
    11. Zhao, Jie & Han, Tong & Wang, Chong & Jia, Hao & Worqlul, Abeyou W. & Norelli, Nicole & Zeng, Zhaohai & Chu, Qingquan, 2020. "Optimizing irrigation strategies to synchronously improve the yield and water productivity of winter wheat under interannual precipitation variability in the North China Plain," Agricultural Water Management, Elsevier, vol. 240(C).
    12. Wang, Jintao & Dong, Xinliang & Qiu, Rangjian & Lou, Boyuan & Tian, Liu & Chen, Pei & Zhang, Xuejia & Liu, Xiaojing & Sun, Hongyong, 2023. "Optimization of sowing date and irrigation schedule of maize in different cropping systems by APSIM for realizing grain mechanical harvesting in the North China Plain," Agricultural Water Management, Elsevier, vol. 276(C).
    13. Attia, Ahmed & Rajan, Nithya & Xue, Qingwu & Nair, Shyam & Ibrahim, Amir & Hays, Dirk, 2016. "Application of DSSAT-CERES-Wheat model to simulate winter wheat response to irrigation management in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 165(C), pages 50-60.
    14. Zhong, Honglin & Sun, Laixiang & Fischer, Günther & Tian, Zhan & Liang, Zhuoran, 2019. "Optimizing regional cropping systems with a dynamic adaptation strategy for water sustainable agriculture in the Hebei Plain," Agricultural Systems, Elsevier, vol. 173(C), pages 94-106.
    15. Liang, Hao & Qin, Wei & Hu, Kelin & Tao, Hongbing & Li, Baoguo, 2019. "Modelling groundwater level dynamics under different cropping systems and developing groundwater neutral systems in the North China Plain," Agricultural Water Management, Elsevier, vol. 213(C), pages 732-741.
    16. Zeng, Ruiyun & Yao, Fengmei & Zhang, Sha & Yang, Shanshan & Bai, Yun & Zhang, Jiahua & Wang, Jingwen & Wang, Xin, 2021. "Assessing the effects of precipitation and irrigation on winter wheat yield and water productivity in North China Plain," Agricultural Water Management, Elsevier, vol. 256(C).
    17. Wang, Chong & Gao, Zhenzhen & Zhao, Jiongchao & Feng, Yupeng & Laraib, Iqra & Shang, Mengfei & Wang, Kaicheng & Chen, Fu & Chu, Qingquan, 2022. "Irrigation-induced hydrothermal variation affects greenhouse gas emissions and crop production," Agricultural Water Management, Elsevier, vol. 260(C).
    18. Zhong, Honglin & Sun, Laixiang & Fischer, Günther & Tian, Zhan & van Velthuizen, Harrij & Liang, Zhuoran, 2017. "Mission Impossible? Maintaining regional grain production level and recovering local groundwater table by cropping system adaptation across the North China Plain," Agricultural Water Management, Elsevier, vol. 193(C), pages 1-12.
    19. Zhao, Jie & Zhang, Xuepeng & Yang, Yadong & Zang, Huadong & Yan, Peng & Meki, Manyowa N. & Doro, Luca & Sui, Peng & Jeong, Jaehak & Zeng, Zhaohai, 2021. "Alternative cropping systems for groundwater irrigation sustainability in the North China Plain," Agricultural Water Management, Elsevier, vol. 250(C).
    20. Chen, Qiaomin & Liu, Yujie & Ge, Quansheng & Pan, Tao, 2018. "Impacts of historic climate variability and land use change on winter wheat climatic productivity in the North China Plain during 1980–2010," Land Use Policy, Elsevier, vol. 76(C), pages 1-9.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:354-:d:129451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.