IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v256y2021ics0378377421003395.html
   My bibliography  Save this article

Assessing basin blue–green available water components under different management and climate scenarios using SWAT

Author

Listed:
  • Jeyrani, F.
  • Morid, S.
  • Srinivasan, R.

Abstract

Because the pattern of climate and thus water demand varies rapidly, an accurate assessment of available water (AW) must be determined in order to manage water resources sustainable. This study investigated the components of basin AW using a comprehensive water balance framework based on the SWAT model. It consists of a system of relationships describing different components of water balance to estimate diverse forms of AW. The resulting modelling system is capable of displaying current status and past trends in the components of AW, highlight links between blue and green water components, assess AW at farm and basin scales, and forecast spatial and temporal variations of AW components under different water policies and climate scenarios as well as evaluating potential water shortage. To explore this methodology, the system was applied to the Tashk-Bakhtegan basin (Iran). The results for the historical period showed wide changes in the blue water components, which was very lower for the green water ones. For instance, it was between 63% and − 56% for renewable BW and 11% and − 24% for renewable GW with respect to their long term means. Similarly, blue water was more sensitive than green water to future annual precipitation variations. Evaluation of the construction of the basin’s major dam showed that it has drastic impact on the spatial blue AW components; such that they are increased in the adjacent subbasin up to 97% and reduced to half the status quo in the downstream subbasins. The basin has also experienced 30% increase in cropped areas, resulting in 1500 million meter cubic (MCM) water shortage in the current condition. Considering the framework as a relatively easy-to-use tools with readily available data, is strongly recommended for other regions.

Suggested Citation

  • Jeyrani, F. & Morid, S. & Srinivasan, R., 2021. "Assessing basin blue–green available water components under different management and climate scenarios using SWAT," Agricultural Water Management, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:agiwat:v:256:y:2021:i:c:s0378377421003395
    DOI: 10.1016/j.agwat.2021.107074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421003395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rijsberman, Frank R., 2006. "Water scarcity: Fact or fiction?," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 5-22, February.
    2. Gohar, Abdelaziz A. & Cashman, Adrian, 2016. "A methodology to assess the impact of climate variability and change on water resources, food security and economic welfare," Agricultural Systems, Elsevier, vol. 147(C), pages 51-64.
    3. Raeisi, Leila Goli & Morid, Saeed & Delavar, Majid & Srinivasan, Raghavan, 2019. "Effect and side-effect assessment of different agricultural water saving measures in an integrated framework," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    4. Francisco Martin-Carrasco & Luis Garrote & Ana Iglesias & Luis Mediero, 2013. "Diagnosing Causes of Water Scarcity in Complex Water Resources Systems and Identifying Risk Management Actions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(6), pages 1693-1705, April.
    5. Gassman, Philip W. & Reyes, Manuel R. & Green, Colleen H. & Arnold, Jeffrey G., 2007. "The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions," ISU General Staff Papers 200701010800001027, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lekarkar, Katoria & Nkwasa, Albert & Villani, Lorenzo & van Griensven, Ann, 2024. "Localizing agricultural impacts of 21st century climate pathways in data scarce catchments: A case study of the Nyando catchment, Kenya," Agricultural Water Management, Elsevier, vol. 294(C).
    2. Eini, Mohammad Reza & Salmani, Haniyeh & Piniewski, Mikołaj, 2023. "Comparison of process-based and statistical approaches for simulation and projections of rainfed crop yields," Agricultural Water Management, Elsevier, vol. 277(C).
    3. Zarezadeh, Mahboubeh & Delavar, Majid & Morid, Saeed & Abbasi, Hamid, 2023. "Evaluating the effectiveness of macro-level water-saving policies based on water footprint sustainability indicators," Agricultural Water Management, Elsevier, vol. 282(C).
    4. Can Cao & Rui Sun & Zhixiang Wu & Bangqian Chen & Chuan Yang & Qian Li & Klaus Fraedrich, 2023. "Streamflow Response to Climate and Land-Use Changes in a Tropical Island Basin," Sustainability, MDPI, vol. 15(18), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    2. S. Ashbolt & S. Maheepala & B. Perera, 2014. "A Framework for Short-term Operational Planning for Water Grids," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2367-2380, June.
    3. Dongguo Shao & Xudong Li & Wenquan Gu, 2015. "A Method for Temporary Water Scarcity Analysis in Humid Region Under Droughts Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3823-3839, August.
    4. Mike Spiliotis & Francisco Martín-Carrasco & Luis Garrote, 2015. "A Fuzzy Multicriteria Categorization of Water Scarcity in Complex Water Resources Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 521-539, January.
    5. Lauri Ahopelto & Noora Veijalainen & Joseph H. A. Guillaume & Marko Keskinen & Mika Marttunen & Olli Varis, 2019. "Can There be Water Scarcity with Abundance of Water? Analyzing Water Stress during a Severe Drought in Finland," Sustainability, MDPI, vol. 11(6), pages 1-18, March.
    6. Immerzeel, W.W. & Gaur, A. & Zwart, S.J., 2008. "Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment," Agricultural Water Management, Elsevier, vol. 95(1), pages 11-24, January.
    7. Antonio J. Castro & Cristina Quintas-Soriano & Jodi Brandt & Carla L. Atkinson & Colden V. Baxter & Morey Burnham & Benis N. Egoh & Marina García-Llorente & Jason P. Julian & Berta Martín-López & Feli, 2018. "Applying Place-Based Social-Ecological Research to Address Water Scarcity: Insights for Future Research," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    8. Egbendewe-Mondzozo, Aklesso & Swinton, Scott M. & Bals, Bryan D. & Dale, Bruce E., 2011. "Can Dispersed Biomass Processing Protect the Environment and Cover the Bottom Line for Biofuel?," Staff Paper Series 119348, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    9. Uche T. Okpara & Lindsay C. Stringer & Andrew J. Dougill & Mohammed D. Bila, 2015. "Conflicts about water in Lake Chad: Are environmental, vulnerability and security issues linked?," Progress in Development Studies, , vol. 15(4), pages 308-325, October.
    10. Andersson, Jafet C.M. & Zehnder, Alexander J.B. & Rockström, Johan & Yang, Hong, 2011. "Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa," Agricultural Water Management, Elsevier, vol. 98(7), pages 1113-1124, May.
    11. Hongxing Liu & Wendong Zhang & Elena Irwin & Jeffrey Kast & Noel Aloysius & Jay Martin & Margaret Kalcic, 2020. "Best Management Practices and Nutrient Reduction: An Integrated Economic-Hydrologic Model of the Western Lake Erie Basin," Land Economics, University of Wisconsin Press, vol. 96(4), pages 510-530.
    12. Basem Shomar & Mohamed Darwish & Candace Rowell, 2014. "What does Integrated Water Resources Management from Local to Global Perspective Mean? Qatar as a Case Study, the Very Rich Country with No Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2781-2791, August.
    13. Medwid, Laura J. & Lambert, Dayton M. & Clark, Christopher D. & Hawkins, Shawn A. & McClellan, Hannah A., 2016. "Estimating Soil Loss Abatement Curves with Primary Survey Data and Hydrologic Models: An Empirical Example for Livestock Production in an East Tennessee Watershed," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230052, Southern Agricultural Economics Association.
    14. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2016. "Research Needs and Challenges in the FEW System: Coupling Economic Models with Agronomic, Hydrologic, and Bioenergy Models for Sustainable Food, Energy, and Water Systems," Center for Agricultural and Rural Development (CARD) Publications 16-wp563, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    15. Alan F. Hamlet & Nima Ehsani & Jennifer L. Tank & Zachariah Silver & Kyuhyun Byun & Ursula H. Mahl & Shannon L. Speir & Matt T. Trentman & Todd V. Royer, 2024. "Effects of climate and winter cover crops on nutrient loss in agricultural watersheds in the midwestern U.S," Climatic Change, Springer, vol. 177(1), pages 1-21, January.
    16. Negar Tayebzadeh Moghadam & Karim C. Abbaspour & Bahram Malekmohammadi & Mario Schirmer & Ahmad Reza Yavari, 2021. "Spatiotemporal Modelling of Water Balance Components in Response to Climate and Landuse Changes in a Heterogeneous Mountainous Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 793-810, February.
    17. Yates, Andrew J. & Doyle, Martin W. & Rigby, J.R. & Schnier, Kurt E., 2013. "Market power, private information, and the optimal scale of pollution permit markets with application to North Carolina's Neuse River," Resource and Energy Economics, Elsevier, vol. 35(3), pages 256-276.
    18. Eini, Mohammad Reza & Salmani, Haniyeh & Piniewski, Mikołaj, 2023. "Comparison of process-based and statistical approaches for simulation and projections of rainfed crop yields," Agricultural Water Management, Elsevier, vol. 277(C).
    19. Gong, Feng & Wang, Wenbin & Li, Hao & Xia, Dawei (David) & Dai, Qingwen & Wu, Xinlin & Wang, Mingzhou & Li, Jian & Papavassiliou, Dimitrios V. & Xiao, Rui, 2020. "Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification," Applied Energy, Elsevier, vol. 261(C).
    20. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:256:y:2021:i:c:s0378377421003395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.