IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v252y2021ics0378377421001694.html
   My bibliography  Save this article

Robust climate change adaptation pathways in agricultural water management

Author

Listed:
  • Babaeian, Fariba
  • Delavar, Majid
  • Morid, Saeed
  • Srinivasan, Raghavan

Abstract

Analysis of climate change impacts as well as conscious decision-making and long-term planning in complex water resources systems require use of innovative approaches under conditions of deep climate uncertainty. This research aims to design and evaluate robust adaptable plans under deep climate uncertainties in the agricultural sector. For this purpose, a combination of the Adaptation Pathways (AP) approach in conjunction with the Soil and Water Assessment Tool (SWAT) model is used to evaluate the robustness of adaptation actions and to design robust adaptation pathways under future climate uncertainties in the Hablehroud River Basin, Iran. Deep climate uncertainties are specified as plausible climate scenario combinations according to the average precipitation and temperature changes in Representative Concentration Pathways (RCPs) 4.5 and 8.5, 2020–2080. According to the results, changes in cropping patterns represent the most robust adaptation action across various combinations of climate scenarios. Other adaptation actions, including deficit irrigation, changes in crop planting dates, and improving irrigation efficiency, are fairly robust in the specific time period from 2020 to 2080. Sequencing of these adaptation actions based on their robustness and expiry date results in designing adaptation pathway maps under RCPs 4.5 and 8.5. Finally, different preferred pathways are identified based on the expiry date of each robust adaptation action. Changes in cropping patterns can be selected as the most robust adaptation pathway (robustness greater than 80) under deep climate uncertainty among these different pathways. Suggesting other preferred pathways can be helpful to select reasonable pathways for implementation.

Suggested Citation

  • Babaeian, Fariba & Delavar, Majid & Morid, Saeed & Srinivasan, Raghavan, 2021. "Robust climate change adaptation pathways in agricultural water management," Agricultural Water Management, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:agiwat:v:252:y:2021:i:c:s0378377421001694
    DOI: 10.1016/j.agwat.2021.106904
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421001694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michelle Woodward & Zoran Kapelan & Ben Gouldby, 2014. "Adaptive Flood Risk Management Under Climate Change Uncertainty Using Real Options and Optimization," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 75-92, January.
    2. Marjolijn Haasnoot & Hans Middelkoop & Astrid Offermans & Eelco Beek & Willem Deursen, 2012. "Exploring pathways for sustainable water management in river deltas in a changing environment," Climatic Change, Springer, vol. 115(3), pages 795-819, December.
    3. Pieter Bloemen & Tim Reeder & Chris Zevenbergen & Jeroen Rijke & Ashley Kingsborough, 2018. "Lessons learned from applying adaptation pathways in flood risk management and challenges for the further development of this approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(7), pages 1083-1108, October.
    4. Mosavi, Seyed Habibollah & Soltani, Shiva & Khalilian, Sadegh, 2020. "Coping with climate change in agriculture: Evidence from Hamadan-Bahar plain in Iran," Agricultural Water Management, Elsevier, vol. 241(C).
    5. Raeisi, Leila Goli & Morid, Saeed & Delavar, Majid & Srinivasan, Raghavan, 2019. "Effect and side-effect assessment of different agricultural water saving measures in an integrated framework," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    6. Alain de Janvry & Elisabeth Sadoulet, 2010. "Agriculture for Development in Africa: Business-as-Usual or New Departures?-super- †," Journal of African Economies, Centre for the Study of African Economies, vol. 19(suppl_2), pages 7-39.
    7. Domínguez, A. & de Juan, J.A. & Tarjuelo, J.M. & Martínez, R.S. & Martínez-Romero, A., 2012. "Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 67-77.
    8. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    9. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    10. Ali, M.H. & Hoque, M.R. & Hassan, A.A. & Khair, A., 2007. "Effects of deficit irrigation on yield, water productivity, and economic returns of wheat," Agricultural Water Management, Elsevier, vol. 92(3), pages 151-161, September.
    11. Rezaei Zaman, Mostafa & Morid, Saeed & Delavar, Majid, 2016. "Evaluating climate adaptation strategies on agricultural production in the Siminehrud catchment and inflow into Lake Urmia, Iran using SWAT within an OECD framework," Agricultural Systems, Elsevier, vol. 147(C), pages 98-110.
    12. Lawrence, Judy & Haasnoot, Marjolijn, 2017. "What it took to catalyse uptake of dynamic adaptive pathways planning to address climate change uncertainty," Environmental Science & Policy, Elsevier, vol. 68(C), pages 47-57.
    13. Aghapour Sabbaghi, Mohammad & Nazari, Mohammadreza & Araghinejad, Shahab & Soufizadeh, Saeid, 2020. "Economic impacts of climate change on water resources and agriculture in Zayandehroud river basin in Iran," Agricultural Water Management, Elsevier, vol. 241(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baccar, Mariem & Raynal, Hélène & Sekhar, Muddu & Bergez, Jacques-Eric & Willaume, Magali & Casel, Pierre & Giriraj, P. & Murthy, Sanjeeva & Ruiz, Laurent, 2023. "Dynamics of crop category choices reveal strategies and tactics used by smallholder farmers in India to cope with unreliable water availability," Agricultural Systems, Elsevier, vol. 211(C).
    2. Ahmad Radmehr & Omid Bozorg-Haddad & Hugo A. Loáiciga, 2022. "Developing Strategies for Agricultural Water Management of Large Irrigation and Drainage Networks with Fuzzy MCDM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 4885-4912, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vizinho, André & Avelar, David & Fonseca, Ana Lúcia & Carvalho, Silvia & Sucena-Paiva, Leonor & Pinho, Pedro & Nunes, Alice & Branquinho, Cristina & Vasconcelos, Ana Cátia & Santos, Filipe Duarte & Ro, 2021. "Framing the application of Adaptation Pathways for agroforestry in Mediterranean drylands," Land Use Policy, Elsevier, vol. 104(C).
    2. Samira Shayanmehr & Jana Ivanič Porhajašová & Mária Babošová & Mahmood Sabouhi Sabouni & Hosein Mohammadi & Shida Rastegari Henneberry & Naser Shahnoushi Foroushani, 2022. "The Impacts of Climate Change on Water Resources and Crop Production in an Arid Region," Agriculture, MDPI, vol. 12(7), pages 1-22, July.
    3. Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
    4. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    5. Karam, F. & Amacha, N. & Fahed, S. & EL Asmar, T. & Domínguez, A., 2014. "Response of potato to full and deficit irrigation under semiarid climate: Agronomic and economic implications," Agricultural Water Management, Elsevier, vol. 142(C), pages 144-151.
    6. Luciano Raso & Jan Kwakkel & Jos Timmermans, 2019. "Assessing the Capacity of Adaptive Policy Pathways to Adapt on Time by Mapping Trigger Values to Their Outcomes," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    7. Rathore, Vijay Singh & Nathawat, Narayan Singh & Bhardwaj, Seema & Sasidharan, Renjith Puthiyedathu & Yadav, Bhagirath Mal & Kumar, Mahesh & Santra, Priyabrata & Yadava, Narendra Dev & Yadav, Om Parka, 2017. "Yield, water and nitrogen use efficiencies of sprinkler irrigated wheat grown under different irrigation and nitrogen levels in an arid region," Agricultural Water Management, Elsevier, vol. 187(C), pages 232-245.
    8. Peake, A.S. & Carberry, P.S. & Raine, S.R. & Gett, V. & Smith, R.J., 2016. "An alternative approach to whole-farm deficit irrigation analysis: Evaluating the risk-efficiency of wheat irrigation strategies in sub-tropical Australia," Agricultural Water Management, Elsevier, vol. 169(C), pages 61-76.
    9. Judy Lawrence & Robert Bell & Adolf Stroombergen, 2019. "A Hybrid Process to Address Uncertainty and Changing Climate Risk in Coastal Areas Using Dynamic Adaptive Pathways Planning, Multi-Criteria Decision Analysis & Real Options Analysis: A New Zealand App," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    10. Graeme Guthrie, 2019. "Real options analysis of climate-change adaptation: investment flexibility and extreme weather events," Climatic Change, Springer, vol. 156(1), pages 231-253, September.
    11. Stanton, Muriel C. Bonjean & Roelich, Katy, 2021. "Decision making under deep uncertainties: A review of the applicability of methods in practice," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    12. Sánchez-Virosta, A & Léllis, B.C & Pardo, J.J & Martínez-Romero, A & Sánchez-Gómez, D & Domínguez, A, 2020. "Functional response of garlic to optimized regulated deficit irrigation (ORDI) across crop stages and years: Is physiological performance impaired at the most sensitive stages to water deficit?," Agricultural Water Management, Elsevier, vol. 228(C).
    13. Wang, Yufeng & Kang, Shaozhong & Li, Fusheng & Zhang, Xiaotao, 2021. "Modified water-nitrogen productivity function based on response of water sensitive index to nitrogen for hybrid maize under drip fertigation," Agricultural Water Management, Elsevier, vol. 245(C).
    14. Pardo, J.J. & Sánchez-Virosta, A. & Léllis, B.C. & Domínguez, A. & Martínez-Romero, A., 2022. "Physiological basis to assess barley response to optimized regulated deficit irrigation for limited volumes of water (ORDIL)," Agricultural Water Management, Elsevier, vol. 274(C).
    15. Memon, Shamim Ara & Sheikh, Irfan Ahemd & Talpur, Mashooque Ali & Mangrio, Munir Ahmed, 2021. "Impact of deficit irrigation strategies on winter wheat in semi-arid climate of sindh," Agricultural Water Management, Elsevier, vol. 243(C).
    16. Dittrich, Ruth & Wreford, Anita & Moran, Dominic, 2016. "A survey of decision-making approaches for climate change adaptation: Are robust methods the way forward?," Ecological Economics, Elsevier, vol. 122(C), pages 79-89.
    17. Zwart, Sander J. & Bastiaanssen, Wim G.M. & de Fraiture, Charlotte & Molden, David J., 2010. "A global benchmark map of water productivity for rainfed and irrigated wheat," Agricultural Water Management, Elsevier, vol. 97(10), pages 1617-1627, October.
    18. Christoffer Carstens & Karin Mossberg Sonnek & Riitta Räty & Per Wikman-Svahn & Annika Carlsson-Kanyama & Jonathan Metzger, 2019. "Insights from Testing a Modified Dynamic Adaptive Policy Pathways Approach for Spatial Planning at the Municipal Level," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    19. Luciano Raso & Jan Kwakkel & Jos Timmermans & Geremy Panthou, 2019. "How to evaluate a monitoring system for adaptive policies: criteria for signposts selection and their model-based evaluation," Climatic Change, Springer, vol. 153(1), pages 267-283, March.
    20. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:252:y:2021:i:c:s0378377421001694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.