IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v228y2020ics0378377419313617.html
   My bibliography  Save this article

Functional response of garlic to optimized regulated deficit irrigation (ORDI) across crop stages and years: Is physiological performance impaired at the most sensitive stages to water deficit?

Author

Listed:
  • Sánchez-Virosta, A
  • Léllis, B.C
  • Pardo, J.J
  • Martínez-Romero, A
  • Sánchez-Gómez, D
  • Domínguez, A

Abstract

Garlic is widely cultivated around the globe. Particularly in semi-arid regions, where limited water reservoirs are getting more valuable due to climate change and increasing demand. In this context, implementation of irrigation management techniques such as the optimized regulated deficit irrigation (ORDI) are beginning to be explored. ORDI distributes the total available water, based on the needs at each growing stage (in the case of garlic: establishment = Ky(i’), crop development = Ky(i’’), bulbification = Ky(ii) and ripening = Ky(iii)). To evaluate and improve deficit irrigation strategies, leaf functional traits such as stomatal conductance (gs); net CO2 assimilation rate (An) and the ratio of An and gs, known as the intrinsic water use efficiency (WUEi) can be reliable indicators of the functional response of the plant and its acclimation to deficit irrigation. In this study, five irrigation treatments were analyzed during 2016 and 2017: one without water limitation (FullIG), and the other four with different irrigation water supplies, corresponding to 100 %, 90%, 80% and 70% of net irrigation needs of purple garlic for intermediate weather conditions of a typical meteorological year (TMY). In 2015, the same treatments except T100 were analyzed. Thus, FullIG and T100 were the same treatment up to the amount of water assigned to T100 was depleted. In the case of T90, T80 and T70, the allocation of the amount of available irrigation water was optimized by using ORDI. Garlic displayed acclimation to water deficits imposed by ORDI. ORDI allowed the recovery of optimal physiological performance of garlic after water stressed and increased irrigation supply at the most drought sensitive stages. However, other environmental factors besides water deficit, affected biomass increment and finally bulb yield throughout the studied years. Overall, this study confirmed that ORDI optimized irrigation water supply throughout the crop cycle, minimizing yield losses in the most water limited treatments and supported the use of selected functional traits as early proxies of crop yield to assist and improve irrigation management of garlic in areas with restricted water availability.

Suggested Citation

  • Sánchez-Virosta, A & Léllis, B.C & Pardo, J.J & Martínez-Romero, A & Sánchez-Gómez, D & Domínguez, A, 2020. "Functional response of garlic to optimized regulated deficit irrigation (ORDI) across crop stages and years: Is physiological performance impaired at the most sensitive stages to water deficit?," Agricultural Water Management, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:agiwat:v:228:y:2020:i:c:s0378377419313617
    DOI: 10.1016/j.agwat.2019.105886
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419313617
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105886?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Domínguez, A. & Martínez-Navarro, A. & López-Mata, E. & Tarjuelo, J.M. & Martínez-Romero, A., 2017. "Real farm management depending on the available volume of irrigation water (part I): Financial analysis," Agricultural Water Management, Elsevier, vol. 192(C), pages 71-84.
    2. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    3. Ramírez, David A. & Yactayo, Wendy & Rens, Libby R. & Rolando, José L. & Palacios, Susan & De Mendiburu, Felipe & Mares, Víctor & Barreda, Carolina & Loayza, Hildo & Monneveux, Philippe & Zotarelli, L, 2016. "Defining biological thresholds associated to plant water status for monitoring water restriction effects: Stomatal conductance and photosynthesis recovery as key indicators in potato," Agricultural Water Management, Elsevier, vol. 177(C), pages 369-378.
    4. Fabeiro Cortes, C. & Martin de Santa Olalla, F. & Lopez Urrea, R., 2003. "Production of garlic (Allium sativum L.) under controlled deficit irrigation in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 59(2), pages 155-167, March.
    5. Daryanto, Stefani & Wang, Lixin & Jacinthe, Pierre-André, 2017. "Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review," Agricultural Water Management, Elsevier, vol. 179(C), pages 18-33.
    6. García-Tejero, I. & Romero-Vicente, R. & Jiménez-Bocanegra, J.A. & Martínez-García, G. & Durán-Zuazo, V.H. & Muriel-Fernández, J.L., 2010. "Response of citrus trees to deficit irrigation during different phenological periods in relation to yield, fruit quality, and water productivity," Agricultural Water Management, Elsevier, vol. 97(5), pages 689-699, May.
    7. Villalobos, F. J. & Testi, L. & Rizzalli, R. & Orgaz, F., 2004. "Evapotranspiration and crop coefficients of irrigated garlic (Allium sativum L.) in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 64(3), pages 233-249, February.
    8. Domínguez, A. & Tarjuelo, J.M. & de Juan, J.A. & López-Mata, E. & Breidy, J. & Karam, F., 2011. "Deficit irrigation under water stress and salinity conditions: The MOPECO-Salt Model," Agricultural Water Management, Elsevier, vol. 98(9), pages 1451-1461, July.
    9. Domínguez, A. & Martínez-Romero, A. & Leite, K.N. & Tarjuelo, J.M. & de Juan, J.A. & López-Urrea, R., 2013. "Combination of typical meteorological year with regulated deficit irrigation to improve the profitability of garlic growing in central spain," Agricultural Water Management, Elsevier, vol. 130(C), pages 154-167.
    10. Leite, K.N. & Martínez-Romero, A. & Tarjuelo, J.M. & Domínguez, A., 2015. "Distribution of limited irrigation water based on optimized regulated deficit irrigation and typical metheorological year concepts," Agricultural Water Management, Elsevier, vol. 148(C), pages 164-176.
    11. Domínguez, A. & de Juan, J.A. & Tarjuelo, J.M. & Martínez, R.S. & Martínez-Romero, A., 2012. "Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 67-77.
    12. Hanson, B. & May, D. & Voss, R. & Cantwell, M. & Rice, R., 2003. "Response of garlic to irrigation water," Agricultural Water Management, Elsevier, vol. 58(1), pages 29-43, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pardo, J.J. & Sánchez-Virosta, A. & Léllis, B.C. & Domínguez, A. & Martínez-Romero, A., 2022. "Physiological basis to assess barley response to optimized regulated deficit irrigation for limited volumes of water (ORDIL)," Agricultural Water Management, Elsevier, vol. 274(C).
    2. Léllis, B.C. & Martínez-Romero, A. & Schwartz, R.C. & Pardo, J.J. & Tarjuelo, J.M. & Domínguez, A., 2022. "Effect of the optimized regulated deficit irrigation methodology on water use in garlic," Agricultural Water Management, Elsevier, vol. 260(C).
    3. Martínez-Romero, A. & López-Urrea, R. & Montoya, F. & Pardo, J.J. & Domínguez, A., 2021. "Optimization of irrigation scheduling for barley crop, combining AquaCrop and MOPECO models to simulate various water-deficit regimes," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Liu, Xiaogang & Peng, Youliang & Yang, Qiliang & Wang, Xiukang & Cui, Ningbo, 2021. "Determining optimal deficit irrigation and fertilization to increase mango yield, quality, and WUE in a dry hot environment based on TOPSIS," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Zhang, Pengyan & Liu, Jiangzhou & Zhang, Haocheng & Wang, Maodong & Xu, Jiatun & Yu, Lianyu & Cai, Huanjie, 2024. "Deficit irrigation interacting with biochar mitigates N2O emissions from farmland in a wheat–maize rotation system," Agricultural Water Management, Elsevier, vol. 297(C).
    6. Zhang, Pengyan & Liu, Jiangzhou & Wang, Maodong & Zhang, Haocheng & Yang, Nan & Ma, Jing & Cai, Huanjie, 2024. "Effects of irrigation and fertilization with biochar on the growth, yield, and water/nitrogen use of maize on the Guanzhong Plain, China," Agricultural Water Management, Elsevier, vol. 295(C).
    7. Mu, Qing & Cai, Huanjie & Sun, Shikun & Wen, Shanshan & Xu, Jiatun & Dong, Mengqi & Saddique, Qaisar, 2021. "The physiological response of winter wheat under short-term drought conditions and the sensitivity of different indices to soil water changes," Agricultural Water Management, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Léllis, B.C. & Martínez-Romero, A. & Schwartz, R.C. & Pardo, J.J. & Tarjuelo, J.M. & Domínguez, A., 2022. "Effect of the optimized regulated deficit irrigation methodology on water use in garlic," Agricultural Water Management, Elsevier, vol. 260(C).
    2. Pardo, J.J. & Martínez-Romero, A. & Léllis, B.C. & Tarjuelo, J.M. & Domínguez, A., 2020. "Effect of the optimized regulated deficit irrigation methodology on water use in barley under semiarid conditions," Agricultural Water Management, Elsevier, vol. 228(C).
    3. López-Urrea, R. & Domínguez, A. & Pardo, J.J. & Montoya, F. & García-Vila, M. & Martínez-Romero, A., 2020. "Parameterization and comparison of the AquaCrop and MOPECO models for a high-yielding barley cultivar under different irrigation levels," Agricultural Water Management, Elsevier, vol. 230(C).
    4. López-Mata, E. & Tarjuelo, J.M. & Orengo-Valverde, J.J. & Pardo, J.J. & Domínguez, A., 2019. "Irrigation scheduling to maximize crop gross margin under limited water availability," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    5. Pardo, J.J. & Domínguez, A. & Léllis, B.C. & Montoya, F. & Tarjuelo, J.M. & Martínez-Romero, A., 2022. "Effect of the optimized regulated deficit irrigation methodology on quality, profitability and sustainability of barley in water scarce areas," Agricultural Water Management, Elsevier, vol. 266(C).
    6. Pardo, J.J. & Sánchez-Virosta, A. & Léllis, B.C. & Domínguez, A. & Martínez-Romero, A., 2022. "Physiological basis to assess barley response to optimized regulated deficit irrigation for limited volumes of water (ORDIL)," Agricultural Water Management, Elsevier, vol. 274(C).
    7. Martínez-Romero, A. & Domínguez, A. & Landeras, G., 2019. "Regulated deficit irrigation strategies for different potato cultivars under continental Mediterranean-Atlantic conditions," Agricultural Water Management, Elsevier, vol. 216(C), pages 164-176.
    8. Domínguez, A. & Martínez-Romero, A. & Leite, K.N. & Tarjuelo, J.M. & de Juan, J.A. & López-Urrea, R., 2013. "Combination of typical meteorological year with regulated deficit irrigation to improve the profitability of garlic growing in central spain," Agricultural Water Management, Elsevier, vol. 130(C), pages 154-167.
    9. Martínez-Romero, A. & Martínez-Navarro, A. & Pardo, J.J. & Montoya, F. & Domínguez, A., 2017. "Real farm management depending on the available volume of irrigation water (part II): Analysis of crop parameters and harvest quality," Agricultural Water Management, Elsevier, vol. 192(C), pages 58-70.
    10. Martínez-Romero, A. & López-Urrea, R. & Montoya, F. & Pardo, J.J. & Domínguez, A., 2021. "Optimization of irrigation scheduling for barley crop, combining AquaCrop and MOPECO models to simulate various water-deficit regimes," Agricultural Water Management, Elsevier, vol. 258(C).
    11. López-Mata, E. & Orengo-Valverde, J.J. & Tarjuelo, J.M. & Martínez-Romero, A. & Domínguez, A., 2016. "Development of a direct-solution algorithm for determining the optimal crop planning of farms using deficit irrigation," Agricultural Water Management, Elsevier, vol. 171(C), pages 173-187.
    12. Karam, F. & Amacha, N. & Fahed, S. & EL Asmar, T. & Domínguez, A., 2014. "Response of potato to full and deficit irrigation under semiarid climate: Agronomic and economic implications," Agricultural Water Management, Elsevier, vol. 142(C), pages 144-151.
    13. Campoy, Jaime & Campos, Isidro & Plaza, Carmen & Calera, María & Jiménez, Nuria & Bodas, Vicente & Calera, Alfonso, 2019. "Water use efficiency and light use efficiency in garlic using a remote sensing-based approach," Agricultural Water Management, Elsevier, vol. 219(C), pages 40-48.
    14. Domínguez, Alfonso & Schwartz, Robert C. & Pardo, José J. & Guerrero, Bridget & Bell, Jourdan M. & Colaizzi, Paul D. & Louis Baumhardt, R., 2022. "Center pivot irrigation capacity effects on maize yield and profitability in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 261(C).
    15. Domínguez, A. & Martínez-Navarro, A. & López-Mata, E. & Tarjuelo, J.M. & Martínez-Romero, A., 2017. "Real farm management depending on the available volume of irrigation water (part I): Financial analysis," Agricultural Water Management, Elsevier, vol. 192(C), pages 71-84.
    16. Lima, F.A. & Córcoles, J.I. & Tarjuelo, J.M. & Martínez-Romero, A., 2019. "Model for management of an on-demand irrigation network based on irrigation scheduling of crops to minimize energy use (Part II): Financial impact of regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 215(C), pages 44-54.
    17. Nascimento, A.K & Schwartz, R.C. & Lima, F.A & López-Mata, E. & Domínguez, A. & Izquiel, A. & Tarjuelo, J.M & Martínez-Romero, A, 2019. "Effects of irrigation uniformity on yield response and production economics of maize in a semiarid zone," Agricultural Water Management, Elsevier, vol. 211(C), pages 178-189.
    18. Leite, K.N. & Martínez-Romero, A. & Tarjuelo, J.M. & Domínguez, A., 2015. "Distribution of limited irrigation water based on optimized regulated deficit irrigation and typical metheorological year concepts," Agricultural Water Management, Elsevier, vol. 148(C), pages 164-176.
    19. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    20. Léllis, B.C. & Carvalho, D.F. & Martínez-Romero, A. & Tarjuelo, J.M. & Domínguez, A., 2017. "Effective management of irrigation water for carrot under constant and optimized regulated deficit irrigation in Brazil," Agricultural Water Management, Elsevier, vol. 192(C), pages 294-305.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:228:y:2020:i:c:s0378377419313617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.