IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v292y2024ics0378377424000246.html
   My bibliography  Save this article

Effects of different long-term fertilization and cropping systems on crop yield, water balance components and water productivity in dryland farming

Author

Listed:
  • Zhang, Rui
  • Zhu, Miyuan
  • Mady, Ahmed Yehia
  • Huang, Mingbin
  • Yan, Xiaoying
  • Guo, Tianqi

Abstract

Water resources are becoming increasingly scarce, and improving water productivity (WP) is crucial to the development of dryland farming on the Chinese Loess Plateau. Fertilization and cropping systems are important measures to improve WP, and tracking their long-term effects on water balance components is helpful for water use and risk management. In this study, the calibrated and validated Hydrus-1D model was used to simulate the dynamic changes of water balance components under four different fertilization treatments (without fertilization, CK; 120 kg ha−1 N and 26.2 kg ha−1 P, NP; 75 t ha−1 manure, M; 120 kg ha−1 N, 26.2 kg ha−1 P, and 75 t ha−1 manure, NPM) and three cropping systems (winter wheat monoculture, WWM; spring maize monoculture, SMM; wheat-wheat-maize rotation, WMR) from 1985 to 2020, with differences in crop yields and WP analyzed. Compared to CK, NPM, NP, and M treatments increased the average yield by 201.9%, 161.7%, and 130.6%; increased the inter-annual yield variations by 191.2%, 149.3%, and 144%; increased transpiration by 80.4%, 58.7%, and 37.5%; reduced evaporation by 18.8%, 5.6%, and 2.3%; decreased deep percolation in the 3 m profile by 44.7%, 60.7%, and 41.1%; and increased WP by 174.5%, 130.8%, and 110.2%, respectively. Values under the three cropping systems occurred in the order SMM>WWM>WMR for normalized crop yield, SMM>WMR>WWM for transpiration, WWM>WMR>SMM for evaporation, and SMM>WWM>WMR for annual average WP. Our results suggest fertilization significantly increases crop yield and WP, with NPM fertilization treatment having the highest WP, but results in large inter-annual yield variations in dryland farming. Spring maize monoculture had the highest yield and WP in this study, while the rotation system balanced the water use differences. These results provide useful information for formulating water management practices for regional dryland farming.

Suggested Citation

  • Zhang, Rui & Zhu, Miyuan & Mady, Ahmed Yehia & Huang, Mingbin & Yan, Xiaoying & Guo, Tianqi, 2024. "Effects of different long-term fertilization and cropping systems on crop yield, water balance components and water productivity in dryland farming," Agricultural Water Management, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377424000246
    DOI: 10.1016/j.agwat.2024.108689
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424000246
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Mingbin & Dang, Tinghui & Gallichand, Jacques & Goulet, Monique, 2003. "Effect of increased fertilizer applications to wheat crop on soil-water depletion in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 58(3), pages 267-278, February.
    2. Moret, D. & Arrue, J.L. & Lopez, M.V. & Gracia, R., 2006. "Influence of fallowing practices on soil water and precipitation storage efficiency in semiarid Aragon (NE Spain)," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 161-176, April.
    3. Anapalli, Saseendran S. & Ahuja, Lajpat R. & Gowda, Prasanna H. & Ma, Liwang & Marek, Gary & Evett, Steven R. & Howell, Terry A., 2016. "Simulation of crop evapotranspiration and crop coefficients with data in weighing lysimeters," Agricultural Water Management, Elsevier, vol. 177(C), pages 274-283.
    4. Evett, Steven R. & Schwartz, Robert C. & Casanova, Joaquin J. & Heng, Lee K., 2012. "Soil water sensing for water balance, ET and WUE," Agricultural Water Management, Elsevier, vol. 104(C), pages 1-9.
    5. Galleguillos, Mauricio & Jacob, Frédéric & Prévot, Laurent & Faúndez, Carlos & Bsaibes, Aline, 2017. "Estimation of actual evapotranspiration over a rainfed vineyard using a 1-D water transfer model: A case study within a Mediterranean watershed," Agricultural Water Management, Elsevier, vol. 184(C), pages 67-76.
    6. Singh, Uttam Kumar & Ren, Li & Kang, Shaozhong, 2010. "Simulation of soil water in space and time using an agro-hydrological model and remote sensing techniques," Agricultural Water Management, Elsevier, vol. 97(8), pages 1210-1220, August.
    7. Wang, Xiquan & Nie, Jiangwen & Wang, Peixin & Zhao, Jie & Yang, Yadong & Wang, Shang & Zeng, Zhaohai & Zang, Huadong, 2021. "Does the replacement of chemical fertilizer nitrogen by manure benefit water use efficiency of winter wheat – summer maize systems?," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Xu, Jing & Guo, Ziyan & Li, Zhimin & Li, Fangjian & Xue, Xuanke & Wu, Xiaorong & Zhang, Xuemei & Li, Hui & Zhang, Xudong & Han, Qingfang, 2021. "Stable oxygen isotope analysis of the water uptake mechanism via the roots in spring maize under the ridge–furrow rainwater harvesting system in a semi-arid region," Agricultural Water Management, Elsevier, vol. 252(C).
    9. Hanson, J. D. & Ahuja, L. R. & Shaffer, M. D. & Rojas, K. W. & DeCoursey, D. G. & Farahani, H. & Johnson, K., 1998. "RZWQM: Simulating the effects of management on water quality and crop production," Agricultural Systems, Elsevier, vol. 57(2), pages 161-195, June.
    10. Mbava, N. & Mutema, M. & Zengeni, R. & Shimelis, H. & Chaplot, V., 2020. "Factors affecting crop water use efficiency: A worldwide meta-analysis," Agricultural Water Management, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Li, Danfeng, 2020. "Quantifying water use and groundwater recharge under flood irrigation in an arid oasis of northwestern China," Agricultural Water Management, Elsevier, vol. 240(C).
    3. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    4. Nandi, R. & Mondal, K. & Singh, K.C. & Saha, M. & Bandyopadhyay, P.K. & Ghosh, P.K., 2021. "Yield-water relationships of lentil grown under different rice establishments in Lower Gangetic Plain of India," Agricultural Water Management, Elsevier, vol. 246(C).
    5. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    6. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    7. Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
    8. Shahadha, Saadi Sattar & Wendroth, Ole & Zhu, Junfeng & Walton, Jason, 2019. "Can measured soil hydraulic properties simulate field water dynamics and crop production?," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    9. Haibiao Dong & Jing Hao & Zongyu Chen & Guanghui Zhang & Mingjiang Yan & Jinzhe Wang, 2022. "Root Water Uptake Patterns for Nitraria during the Growth Period Differing in Time Interval from a Precipitation Event in Arid Regions," Sustainability, MDPI, vol. 14(13), pages 1-9, July.
    10. Libardi, Luís Guilherme Polizel & de Faria, Rogério Teixeira & Dalri, Alexandre Barcellos & de Souza Rolim, Glauco & Palaretti, Luiz Fabiano & Coelho, Anderson Prates & Martins, Izabela Paiva, 2019. "Evapotranspiration and crop coefficient (Kc) of pre-sprouted sugarcane plantlets for greenhouse irrigation management," Agricultural Water Management, Elsevier, vol. 212(C), pages 306-316.
    11. Chantal M. J. Hendriks & Harry S. Gibson & Anna Trett & André Python & Daniel J. Weiss & Anton Vrieling & Michael Coleman & Peter W. Gething & Penny A. Hancock & Catherine L. Moyes, 2019. "Mapping Geospatial Processes Affecting the Environmental Fate of Agricultural Pesticides in Africa," IJERPH, MDPI, vol. 16(19), pages 1-22, September.
    12. Tarkalson, David D. & King, Bradley A. & Bjorneberg, Dave L., 2022. "Maize grain yield and crop water productivity functions in the arid Northwest U.S," Agricultural Water Management, Elsevier, vol. 264(C).
    13. Chen, Yu & Zhang, Jian-Hua & Chen, Mo-Xian & Zhu, Fu-Yuan & Song, Tao, 2023. "Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review," Agricultural Water Management, Elsevier, vol. 289(C).
    14. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Zhuang, Qianlai, 2021. "Evapotranspiration partitioning and water productivity of rainfed maize under contrasting mulching conditions in Northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    15. Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).
    16. Chen, Weiping & Hou, Zhenan & Wu, Laosheng & Liang, Yongchao & Wei, Changzhou, 2010. "Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China," Agricultural Water Management, Elsevier, vol. 97(12), pages 2001-2008, November.
    17. Elke Noellemeyer & Romina Fernández & Alberto Quiroga, 2013. "Crop and Tillage Effects on Water Productivity of Dryland Agriculture in Argentina," Agriculture, MDPI, vol. 3(1), pages 1-11, January.
    18. Janik, Grzegorz & Kłosowicz, Izabela & Walczak, Amadeusz & Adamczewska-Sowińska, Katarzyna & Jama-Rodzeńska, Anna & Sowiński, Józef, 2021. "Application of the TDR technique for the determination of the dynamics of the spatial and temporal distribution of water uptake by plant roots during injection irrigation," Agricultural Water Management, Elsevier, vol. 252(C).
    19. Pizarro, E. & Galleguillos, M. & Barría, P. & Callejas, R., 2022. "Irrigation management or climate change ? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 263(C).
    20. Chengfu Yuan & Shaoyuan Feng & Zailin Huo & Quanyi Ji, 2019. "Simulation of Saline Water Irrigation for Seed Maize in Arid Northwest China Based on SWAP Model," Sustainability, MDPI, vol. 11(16), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377424000246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.