Intelligent greenhouse design decreases water use for evaporative cooling in arid regions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2021.106807
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Antonio Franco & Diego L. Valera & Araceli Peña, 2014. "Energy Efficiency in Greenhouse Evaporative Cooling Techniques: Cooling Boxes versus Cellulose Pads," Energies, MDPI, vol. 7(3), pages 1-21, March.
- Katsoulas, N. & Sapounas, A. & De Zwart, F. & Dieleman, J.A. & Stanghellini, C., 2015. "Reducing ventilation requirements in semi-closed greenhouses increases water use efficiency," Agricultural Water Management, Elsevier, vol. 156(C), pages 90-99.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Araceli Peña-Fernández & Manuel A. Colón-Reynoso & Pilar Mazuela, 2024. "Geometric Analysis of Greenhouse Roofs for Energy Efficiency Optimization and Condensation Drip Reduction," Agriculture, MDPI, vol. 14(2), pages 1-17, January.
- Tsafaras, I. & Campen, J.B. & de Zwart, H.F. & Voogt, W. & Harbi, A. Al & Assaf, K. Al & Abdelaziz, M.E. & Qaryouti, M. & Stanghellini, C., 2022. "Quantifying the trade-off between water and electricity for tomato production in arid environments," Agricultural Water Management, Elsevier, vol. 271(C).
- Hegazy, Anwar & Farid, Mohammed & Subiantoro, Alison & Norris, Stuart, 2022. "Sustainable cooling strategies to minimize water consumption in a greenhouse in a hot arid region," Agricultural Water Management, Elsevier, vol. 274(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Montero, J.I. & Baeza, E. & Heuvelink, E. & Rieradevall, J. & Muñoz, P. & Ercilla, M. & Stanghellini, C., 2017. "Productivity of a building-integrated roof top greenhouse in a Mediterranean climate," Agricultural Systems, Elsevier, vol. 158(C), pages 14-22.
- Aleksejs Prozuments & Arturs Brahmanis & Armands Mucenieks & Vladislavs Jacnevs & Deniss Zajecs, 2022. "Preliminary Study of Various Cross-Sectional Metal Sheet Shapes in Adiabatic Evaporative Cooling Pads," Energies, MDPI, vol. 15(11), pages 1-10, May.
- Zhang, Guanshan & Ding, Xiaoming & Li, Tianhua & Pu, Wenyang & Lou, Wei & Hou, Jialin, 2020. "Dynamic energy balance model of a glass greenhouse: An experimental validation and solar energy analysis," Energy, Elsevier, vol. 198(C).
- Kumar, Shiva & Salins, Sampath Suranjan & Reddy, S.V. Kota & Nair, Prasanth Sreekumar, 2021. "Comparative performance analysis of a static & dynamic evaporative cooling pads for varied climatic conditions," Energy, Elsevier, vol. 233(C).
- Hegazy, Anwar & Farid, Mohammed & Subiantoro, Alison & Norris, Stuart, 2022. "Sustainable cooling strategies to minimize water consumption in a greenhouse in a hot arid region," Agricultural Water Management, Elsevier, vol. 274(C).
- Graamans, Luuk & Baeza, Esteban & van den Dobbelsteen, Andy & Tsafaras, Ilias & Stanghellini, Cecilia, 2018. "Plant factories versus greenhouses: Comparison of resource use efficiency," Agricultural Systems, Elsevier, vol. 160(C), pages 31-43.
- Carotti, Laura & Pistillo, Alessandro & Zauli, Ilaria & Meneghello, Davide & Martin, Michael & Pennisi, Giuseppina & Gianquinto, Giorgio & Orsini, Francesco, 2023. "Improving water use efficiency in vertical farming: Effects of growing systems, far-red radiation and planting density on lettuce cultivation," Agricultural Water Management, Elsevier, vol. 285(C).
- Chiara Bersani & Ahmed Ouammi & Roberto Sacile & Enrico Zero, 2020. "Model Predictive Control of Smart Greenhouses as the Path towards Near Zero Energy Consumption," Energies, MDPI, vol. 13(14), pages 1-17, July.
- Abohorlu Doğramacı, Pervin & Riffat, Saffa & Gan, Guohui & Aydın, Devrim, 2019. "Experimental study of the potential of eucalyptus fibres for evaporative cooling," Renewable Energy, Elsevier, vol. 131(C), pages 250-260.
- Graamans, Luuk & van den Dobbelsteen, Andy & Meinen, Esther & Stanghellini, Cecilia, 2017. "Plant factories; crop transpiration and energy balance," Agricultural Systems, Elsevier, vol. 153(C), pages 138-147.
- Subin Mattara Chalill & Snehaunshu Chowdhury & Ramanujam Karthikeyan, 2021. "Prediction of Key Crop Growth Parameters in a Commercial Greenhouse Using CFD Simulation and Experimental Verification in a Pilot Study," Agriculture, MDPI, vol. 11(7), pages 1-23, July.
- Ana Tejero‐González & Antonio Franco‐Salas, 2022. "Direct evaporative cooling from wetted surfaces: Challenges for a clean air conditioning solution," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.
- Tejero-González, A. & Franco-Salas, A., 2021. "Optimal operation of evaporative cooling pads: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Farrell, Eanna & Hassan, Mohamed I. & Tufa, Ramato A. & Tuomiranta, Arttu & Avci, Ahmet H. & Politano, Antonio & Curcio, Efrem & Arafat, Hassan A., 2017. "Reverse electrodialysis powered greenhouse concept for water- and energy-self-sufficient agriculture," Applied Energy, Elsevier, vol. 187(C), pages 390-409.
- Salins, Sampath Suranjan & Kota Reddy, S.V. & Shiva Kumar,, 2021. "Experimental Investigation and Neural network based parametric prediction in a multistage reciprocating humidifier," Applied Energy, Elsevier, vol. 293(C).
- Anhui He & Xiao Wu & Xinfeng Jiang & Reyimei Maimaitituxun & Ayesha Entemark & Hongjun Xu, 2023. "A Study on the Impact of Different Cooling Methods on the Indoor Environment of Greenhouses Used for Lentinula Edodes during Summer," Agriculture, MDPI, vol. 13(8), pages 1-16, August.
- Eloy Velasco-Gómez & Ana Tejero-González & Javier Jorge-Rico & F. Javier Rey-Martínez, 2020. "Experimental Investigation of the Potential of a New Fabric-Based Evaporative Cooling Pad," Sustainability, MDPI, vol. 12(17), pages 1-13, August.
- Iddio, E. & Wang, L. & Thomas, Y. & McMorrow, G. & Denzer, A., 2020. "Energy efficient operation and modeling for greenhouses: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
- Ben Ali, Rim & Bouadila, Salwa & Mami, Abdelkader, 2020. "Experimental validation of the dynamic thermal behavior of two types of agricultural greenhouses in the Mediterranean context," Renewable Energy, Elsevier, vol. 147(P1), pages 118-129.
- Giuseppina Nicolosi & Roberto Volpe & Antonio Messineo, 2017. "An Innovative Adaptive Control System to Regulate Microclimatic Conditions in a Greenhouse," Energies, MDPI, vol. 10(5), pages 1-17, May.
More about this item
Keywords
Evaporative cooling; Water use efficiency; Greenhouse design; Pad and fan; Water saving; Greenhouse climate simulation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:250:y:2021:i:c:s037837742100072x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.