IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i4p125-d349276.html
   My bibliography  Save this article

Quantification of Erosion in Selected Catchment Areas of the Ruzizi River (DRC) Using the (R)USLE Model

Author

Listed:
  • Joachim Eisenberg

    (Institute of Physical Geography, Geo-Center of the Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany)

  • Fabrice A. Muvundja

    (Unité d’Enseignement et de Recherche en Hydrobiologie Appliquée (UERHA), Institut Supérieur Pédagogique (ISP) de Bukavu, 32, Avenue Kibombo, Ibanda, B.P. 854 Bukavu, Democratic Republic of the Congo
    Centre de Recherche en Environnement et Géoressources, Université Catholique de Bukavu (UCB), 2, Avenue de la Mission (Bugabo), B.P. 285 Bukavu, Democratic Republic of the Congo)

Abstract

Inappropriate land management leads to soil loss with destruction of the land’s resource and sediment input into the receiving river. Part of the sediment budget of a catchment is the estimation of soil loss. In the Ruzizi catchment in the Eastern Democratic Republic of the Congo (DRC), only limited research has been conducted on soil loss mainly dealing with local observations on geomorphological forms or river load measurements; a regional quantification of soil loss is missing so far. Such quantifications can be calculated using the Universal Soil Loss Equation (USLE). It is composed of four factors: precipitation (R), soil (K), topography (LS), and vegetation cover (C). The factors can be calculated in different ways according to the characteristics of the study area. In this paper, different approaches for calculating the single factors are reviewed and validated with field work in two sub-catchments of Ruzizi River supplying the water for the reservoirs of Ruzizi I and II hydroelectric dams. It became obvious that the (R)USLE model provides the best results with revised R and LS factors. C factor calculations required to conduct a supervised classification using the Maximum Likelihood Procedure. Different C factor values were assigned to the land cover classes. The calculations resulted in a soil loss rate for the predominantly occurring Ferralsols and Leptosols of around 576 kt/yr in both catchments, when 2016 landcover and precipitation are used. This represents an area-normalized value of 40.4 t/ha/yr for Ruzizi I and 50.5 t/ha/yr for Ruzizi II due to different landcover in the two sub-catchments. The mean value for the whole study area is 47.8 t/ha/yr or even 27.1 t/ha/yr when considering land management techniques like terracing on the slopes (P factor). This work has shown that the (R)USLE model can serve as an easy to handle tool for soil loss quantification when comprehensive field work results are sparse. The model can be implemented in Geographic Information Systems (GIS) with free data; hence, a validation is crucial. It becomes apparent that the use of high resolution Sentinel 2a MSI data as the basis for C factor calculations is an appropriate method for considering heterogeneous Land Use Land Cover (LULC) patterns. To transfer the approach to other regions, the calculation of factor R needs to be modified.

Suggested Citation

  • Joachim Eisenberg & Fabrice A. Muvundja, 2020. "Quantification of Erosion in Selected Catchment Areas of the Ruzizi River (DRC) Using the (R)USLE Model," Land, MDPI, vol. 9(4), pages 1-18, April.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:4:p:125-:d:349276
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/4/125/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/4/125/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomislav Hengl & Gerard B M Heuvelink & Bas Kempen & Johan G B Leenaars & Markus G Walsh & Keith D Shepherd & Andrew Sila & Robert A MacMillan & Jorge Mendes de Jesus & Lulseged Tamene & Jérôme E Tond, 2015. "Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-26, June.
    2. Tomislav Hengl & Jorge Mendes de Jesus & Gerard B M Heuvelink & Maria Ruiperez Gonzalez & Milan Kilibarda & Aleksandar Blagotić & Wei Shangguan & Marvin N Wright & Xiaoyuan Geng & Bernhard Bauer-Marsc, 2017. "SoilGrids250m: Global gridded soil information based on machine learning," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-40, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pietro De Marinis & Samuele De Petris & Filippo Sarvia & Giacinto Manfron & Evelyn Joan Momo & Tommaso Orusa & Gianmarco Corvino & Guido Sali & Enrico Mondino Borgogno, 2021. "Supporting Pro-Poor Reforms of Agricultural Systems in Eastern DRC (Africa) with Remotely Sensed Data: A Possible Contribution of Spatial Entropy to Interpret Land Management Practices," Land, MDPI, vol. 10(12), pages 1-22, December.
    2. Lucia Petrikovičová & Zuzana Rampašeková & Jaroslava Sobocká, 2020. "A Detailed Identification of Erosionally Endangered Agricultural Land in Slovakia (Case Study of Nitra Upland)," Sustainability, MDPI, vol. 12(12), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Manuel Hernández & Aliou Faye & Mamadou Ousseynou Ly & Zachary P. Stewart & P. V. Vara Prasad & Leonardo Mendes Bastos & Luciana Nieto & Ana J. P. Carcedo & Ignacio Antonio Ciampitti, 2021. "Soil and Climate Characterization to Define Environments for Summer Crops in Senegal," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    2. Ravic Nijbroek & Kristin Piikki & Mats Söderström & Bas Kempen & Katrine G. Turner & Simeon Hengari & John Mutua, 2018. "Soil Organic Carbon Baselines for Land Degradation Neutrality: Map Accuracy and Cost Tradeoffs with Respect to Complexity in Otjozondjupa, Namibia," Sustainability, MDPI, vol. 10(5), pages 1-20, May.
    3. Amirhossein Hassani & Adisa Azapagic & Nima Shokri, 2021. "Global predictions of primary soil salinization under changing climate in the 21st century," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    4. Niels Hellwig & Dylan Tatti & Giacomo Sartori & Kerstin Anschlag & Ulfert Graefe & Markus Egli & Jean-Michel Gobat & Gabriele Broll, 2018. "Modeling Spatial Patterns of Humus Forms in Montane and Subalpine Forests: Implications of Local Variability for Upscaling," Sustainability, MDPI, vol. 11(1), pages 1-15, December.
    5. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Elliott R. Dossou-Yovo & Sander J. Zwart & Amadou Kouyaté & Ibrahima Ouédraogo & Oladele Bakare, 2018. "Predictors of Drought in Inland Valley Landscapes and Enabling Factors for Rice Farmers’ Mitigation Measures in the Sudan-Sahel Zone," Sustainability, MDPI, vol. 11(1), pages 1-17, December.
    7. Dang, Hai-Anh & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," GLO Discussion Paper Series 1445, Global Labor Organization (GLO).
    8. Linghua Qiu & Junhao He & Chao Yue & Philippe Ciais & Chunmiao Zheng, 2024. "Substantial terrestrial carbon emissions from global expansion of impervious surface area," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Meyer, Maximilian & Hulke, Carolin & Kamwi, Jonathan & Kolem, Hannah & Börner, Jan, 2022. "Spatially heterogeneous effects of collective action on environmental dependence in Namibia’s Zambezi region," World Development, Elsevier, vol. 159(C).
    10. Sabastine Ugbemuna Ugbaje & Thomas F.A. Bishop, 2020. "Hydrological Control of Vegetation Greenness Dynamics in Africa: A Multivariate Analysis Using Satellite Observed Soil Moisture, Terrestrial Water Storage and Precipitation," Land, MDPI, vol. 9(1), pages 1-15, January.
    11. Huang, Yawen & Tao, Bo & Lal, Rattan & Lorenz, Klaus & Jacinthe, Pierre-Andre & Shrestha, Raj K. & Bai, Xiongxiong & Singh, Maninder P. & Lindsey, Laura E. & Ren, Wei, 2023. "A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    12. Mark A. Anthony & Leho Tedersoo & Bruno Vos & Luc Croisé & Henning Meesenburg & Markus Wagner & Henning Andreae & Frank Jacob & Paweł Lech & Anna Kowalska & Martin Greve & Genoveva Popova & Beat Frey , 2024. "Fungal community composition predicts forest carbon storage at a continental scale," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Tong Qiu & Robert Andrus & Marie-Claire Aravena & Davide Ascoli & Yves Bergeron & Roberta Berretti & Daniel Berveiller & Michal Bogdziewicz & Thomas Boivin & Raul Bonal & Don C. Bragg & Thomas Caignar, 2022. "Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Joachim Maes & Adrián G. Bruzón & José I. Barredo & Sara Vallecillo & Peter Vogt & Inés Marí Rivero & Fernando Santos-Martín, 2023. "Accounting for forest condition in Europe based on an international statistical standard," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Telmo José Mendes & Diego Silva Siqueira & Eduardo Barretto Figueiredo & Ricardo de Oliveira Bordonal & Mara Regina Moitinho & José Marques Júnior & Newton La Scala Jr., 2021. "Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16410-16427, November.
    16. Banerjee, Onil & Crossman, Neville & Vargas, Renato & Brander, Luke & Verburg, Peter & Cicowiez, Martin & Hauck, Jennifer & McKenzie, Emily, 2020. "Global socio-economic impacts of changes in natural capital and ecosystem services: State of play and new modeling approaches," Ecosystem Services, Elsevier, vol. 46(C).
    17. Chantal M. J. Hendriks & Harry S. Gibson & Anna Trett & André Python & Daniel J. Weiss & Anton Vrieling & Michael Coleman & Peter W. Gething & Penny A. Hancock & Catherine L. Moyes, 2019. "Mapping Geospatial Processes Affecting the Environmental Fate of Agricultural Pesticides in Africa," IJERPH, MDPI, vol. 16(19), pages 1-22, September.
    18. Sarah R. Weiskopf & Forest Isbell & Maria Isabel Arce-Plata & Moreno Di Marco & Mike Harfoot & Justin Johnson & Susannah B. Lerman & Brian W. Miller & Toni Lyn Morelli & Akira S. Mori & Ensheng Weng &, 2024. "Biodiversity loss reduces global terrestrial carbon storage," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Peter Bossew & Giorgia Cinelli & Giancarlo Ciotoli & Quentin G. Crowley & Marc De Cort & Javier Elío Medina & Valeria Gruber & Eric Petermann & Tore Tollefsen, 2020. "Development of a Geogenic Radon Hazard Index—Concept, History, Experiences," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    20. Tania L. Maxwell & Mark D. Spalding & Daniel A. Friess & Nicholas J. Murray & Kerrylee Rogers & Andre S. Rovai & Lindsey S. Smart & Lukas Weilguny & Maria Fernanda Adame & Janine B. Adams & William E., 2024. "Soil carbon in the world’s tidal marshes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:4:p:125-:d:349276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.