IDEAS home Printed from https://ideas.repec.org/a/eee/socmed/v258y2020ics0277953620302914.html
   My bibliography  Save this article

Impact of extreme weather conditions on healthcare provision in urban Ghana

Author

Listed:
  • Codjoe, Samuel N.A.
  • Gough, Katherine V.
  • Wilby, Robert L.
  • Kasei, Raymond
  • Yankson, Paul W.K.
  • Amankwaa, Ebenezer F.
  • Abarike, Mercy A.
  • Atiglo, D. Yaw
  • Kayaga, Sam
  • Mensah, Peter
  • Nabilse, Cuthbert K.
  • Griffiths, Paula L.

Abstract

Extreme weather events pose significant threats to urban health in low- and middle-income countries, particularly in sub-Saharan Africa where there are systemic health challenges. This paper investigates health system vulnerabilities associated with flooding and extreme heat, along with strategies for resilience building by service providers and community members, in Accra and Tamale, Ghana. We employed field observations, rainfall records, temperature measurements, and semi-structured interviews in health facilities within selected areas of both cities. Results indicate that poor building conditions, unstable power supply, poor sanitation and hygiene, and the built environment reduce access to healthcare for residents of poor urban areas. Health facilities are sited in low-lying areas with poor drainage systems and can be 6 °C warmer at night than reported by official records from nearby weather stations. This is due to a combination of greater thermal inertia of the buildings and the urban heat island effect. Flooding and extreme heat interact with socioeconomic conditions to impact physical infrastructure and disrupt community health as well as health facility operations. Community members and health facilities make infrastructural and operational adjustments to reduce extreme weather stress and improve healthcare provision to clients. These measures include: mobilisation of residents to clear rubbish and unclog drains; elevating equipment to protect it from floods; improving ventilation during extreme heat; and using alternative power sources for emergency surgery and storage during outages. Stakeholders recommend additional actions to manage flood and heat impacts on health in their cities, such as, improving the capacity of drainage systems to carry floodwaters, and routine temperature monitoring to better manage heat in health facilities. Finally, more timely and targeted information systems and emergency response plans are required to ensure preparedness for extreme weather events in urban areas.

Suggested Citation

  • Codjoe, Samuel N.A. & Gough, Katherine V. & Wilby, Robert L. & Kasei, Raymond & Yankson, Paul W.K. & Amankwaa, Ebenezer F. & Abarike, Mercy A. & Atiglo, D. Yaw & Kayaga, Sam & Mensah, Peter & Nabilse,, 2020. "Impact of extreme weather conditions on healthcare provision in urban Ghana," Social Science & Medicine, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:socmed:v:258:y:2020:i:c:s0277953620302914
    DOI: 10.1016/j.socscimed.2020.113072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0277953620302914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.socscimed.2020.113072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Noah Kofi KARLEY, 2009. "Flooding And Physical Planning In Urban Areas In West Africa: Situational Analysis Of Accra, Ghana," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 4(4(13)), pages 25-41, November.
    2. Le, Thai-Ha & Chang, Youngho & Park, Donghyun, 2016. "Governance, Vulnerability to Climate Change, and Green Growth: International Evidence," ADB Economics Working Paper Series 500, Asian Development Bank.
    3. Jakob Zscheischler & Seth Westra & Bart J. J. M. Hurk & Sonia I. Seneviratne & Philip J. Ward & Andy Pitman & Amir AghaKouchak & David N. Bresch & Michael Leonard & Thomas Wahl & Xuebin Zhang, 2018. "Future climate risk from compound events," Nature Climate Change, Nature, vol. 8(6), pages 469-477, June.
    4. Clifford Amoako & Daniel Kweku Baah Inkoom, 2018. "The production of flood vulnerability in Accra, Ghana: Re-thinking flooding and informal urbanisation," Urban Studies, Urban Studies Journal Limited, vol. 55(13), pages 2903-2922, October.
    5. Yukiko Hirabayashi & Roobavannan Mahendran & Sujan Koirala & Lisako Konoshima & Dai Yamazaki & Satoshi Watanabe & Hyungjun Kim & Shinjiro Kanae, 2013. "Global flood risk under climate change," Nature Climate Change, Nature, vol. 3(9), pages 816-821, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raymond Seyeram Nkonu & Mary Antwi & Mark Amo-Boateng & Benjamin Wullobayi Dekongmen, 2023. "GIS-based multi-criteria analytical hierarchy process modelling for urban flood vulnerability analysis, Accra Metropolis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1541-1568, June.
    2. Wang, Yutao & Sun, Mingxing & Song, Baimin, 2017. "Public perceptions of and willingness to pay for sponge city initiatives in China," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 11-20.
    3. Xin Wen & Ana María Alarcón Ferreira & Lynn M. Rae & Hirmand Saffari & Zafar Adeel & Laura A. Bakkensen & Karla M. Méndez Estrada & Gregg M. Garfin & Renee A. McPherson & Ernesto Franco Vargas, 2022. "A Comprehensive Methodology for Evaluating the Economic Impacts of Floods: An Application to Canada, Mexico, and the United States," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    4. Haixing Liu & Yuntao Wang & Chi Zhang & Albert S. Chen & Guangtao Fu, 2018. "Assessing real options in urban surface water flood risk management under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 1-18, October.
    5. Weiqing Han & Lei Zhang & Gerald A. Meehl & Shoichiro Kido & Tomoki Tozuka & Yuanlong Li & Michael J. McPhaden & Aixue Hu & Anny Cazenave & Nan Rosenbloom & Gary Strand & B. Jason West & Wen Xing, 2022. "Sea level extremes and compounding marine heatwaves in coastal Indonesia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Rei Itsukushima & Yohei Ogahara & Yuki Iwanaga & Tatsuro Sato, 2018. "Investigating the Influence of Various Stormwater Runoff Control Facilities on Runoff Control Efficiency in a Small Catchment Area," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    7. Mook Bangalore & Andrew Smith & Ted Veldkamp, 2019. "Exposure to Floods, Climate Change, and Poverty in Vietnam," Economics of Disasters and Climate Change, Springer, vol. 3(1), pages 79-99, April.
    8. Azunre, Gideon Abagna & Amponsah, Owusu & Takyi, Stephen Appiah & Mensah, Henry & Braimah, Imoro, 2022. "Urban informalities in sub-Saharan Africa (SSA): A solution for or barrier against sustainable city development," World Development, Elsevier, vol. 152(C).
    9. Lena I. Fuldauer & Scott Thacker & Robyn A. Haggis & Francesco Fuso-Nerini & Robert J. Nicholls & Jim W. Hall, 2022. "Targeting climate adaptation to safeguard and advance the Sustainable Development Goals," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Philip Antwi-Agyei & Frank Baffour-Ata & Sarah Koomson & Nana Kwame Kyeretwie & Nana Barimah Nti & Afia Oforiwaa Owusu & Fukaiha Abdul Razak, 2023. "Drivers and coping mechanisms for floods: experiences of residents in urban Kumasi, Ghana," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2477-2500, March.
    11. Zhang, Yitong & Hao, Zengchao & Zhang, Yu, 2023. "Agricultural risk assessment of compound dry and hot events in China," Agricultural Water Management, Elsevier, vol. 277(C).
    12. J. J. Wijetunge & N. G. P. B. Neluwala, 2023. "Compound flood hazard assessment and analysis due to tropical cyclone-induced storm surges, waves and precipitation: a case study for coastal lowlands of Kelani river basin in Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3979-4007, April.
    13. Tran, Thi Xuyen, 2021. "Typhoon and Agricultural Production Portfolio -Empirical Evidence for a Developing Economy," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242411, Verein für Socialpolitik / German Economic Association.
    14. Franziska Piontek & Matthias Kalkuhl & Elmar Kriegler & Anselm Schultes & Marian Leimbach & Ottmar Edenhofer & Nico Bauer, 2019. "Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1357-1385, August.
    15. Dilshad Ahmad & Muhammad Afzal, 2021. "Impact of climate change on pastoralists’ resilience and sustainable mitigation in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11406-11426, August.
    16. Md. Uzzal Mia & Tahmida Naher Chowdhury & Rabin Chakrabortty & Subodh Chandra Pal & Mohammad Khalid Al-Sadoon & Romulus Costache & Abu Reza Md. Towfiqul Islam, 2023. "Flood Susceptibility Modeling Using an Advanced Deep Learning-Based Iterative Classifier Optimizer," Land, MDPI, vol. 12(4), pages 1-26, April.
    17. Roopam Shukla & Ankit Agarwal & Kamna Sachdeva & Juergen Kurths & P. K. Joshi, 2019. "Climate change perception: an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas," Climatic Change, Springer, vol. 152(1), pages 103-119, January.
    18. Muluneh Legesse Edamo & Samuel Dagalo Hatiye & Thomas T. Minda & Tigistu Yisihak Ukumo, 2023. "Flood inundation and risk mapping under climate change scenarios in the lower Bilate catchment, Ethiopia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2199-2226, September.
    19. Kuik, Onno & Zhou, Fujin & Ciullo, Alessio & Brusselaers, Jan, 2022. "How vulnerable is Europe to severe climate-related natural disasters abroad? A dynamic CGE analysis of the international financial and economic impacts of a large hurricane in the southern USA," Conference papers 333438, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. S. A. Mashi & A. I. Inkani & Oghenejeabor Obaro & A. S. Asanarimam, 2020. "Community perception, response and adaptation strategies towards flood risk in a traditional African city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1727-1759, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:socmed:v:258:y:2020:i:c:s0277953620302914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/315/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.