IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v236y2020ics0378377419316282.html
   My bibliography  Save this article

The potential of antitranspirants in drought management of arable crops: A review

Author

Listed:
  • Mphande, Wiza
  • Kettlewell, Peter S.
  • Grove, Ivan G.
  • Farrell, Aidan D.

Abstract

About 80 % of global farmland is under rain-fed conditions and most of it is prone to drought, which limits crop productivity. Due to climate change, drought will become more frequent and severe, threatening world food security. Antitranspirants, materials that reduce transpiration, could potentially result in greater food production by realising more of a crop’s potential yield during drought. Despite antitranspirants reducing photosynthesis, research has shown that they can mitigate drought stress and increase grain yield. Although this paper is not restricted to specific years, part of it is a systematic review of 173 original research articles published between 2009 and 2018. Overall, the analysis suggests that interest in the potential of antitranspirants is growing. One major achievement in antitranspirant research during the past decade was establishing the optimal timing of application of the substances, which is linked to reproductive processes most vulnerable to drought. Despite research evidence of the efficacy of antitranspirants in ameliorating drought stress, they are not widely used for commercial arable crop production. However, in fruit horticulture, products with antitranspirant effects are already being used commercially for various non-antitranspirant purposes. More recent research shows that with knowledge of a crop's growth stage and soil moisture, antitranspirants can be a valuable option for managing drought impacts on yield in arable crops.

Suggested Citation

  • Mphande, Wiza & Kettlewell, Peter S. & Grove, Ivan G. & Farrell, Aidan D., 2020. "The potential of antitranspirants in drought management of arable crops: A review," Agricultural Water Management, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:agiwat:v:236:y:2020:i:c:s0378377419316282
    DOI: 10.1016/j.agwat.2020.106143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419316282
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kettlewell, Peter, 2011. "Economics of film antitranspirant application: a new approach to protecting wheat crops from drought-induced yield loss," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 1(1), pages 1-3.
    2. AbdAllah, Ahmed M. & Mashaheet, Alsayed M. & Zobel, Richard & Burkey, Kent O., 2019. "Physiological basis for controlling water consumption by two snap beans genotypes using different anti-transpirants," Agricultural Water Management, Elsevier, vol. 214(C), pages 17-27.
    3. Boari, Francesca & Donadio, Antonio & Pace, Bernardo & Schiattone, Maria Immacolata & Cantore, Vito, 2016. "Kaolin improves salinity tolerance, water use efficiency and quality of tomato," Agricultural Water Management, Elsevier, vol. 167(C), pages 29-37.
    4. Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
    5. Abdullah, Araz S. & Aziz, Moyassar Mohammed & Siddique, K.H.M. & Flower, K.C., 2015. "Film antitranspirants increase yield in drought stressed wheat plants by maintaining high grain number," Agricultural Water Management, Elsevier, vol. 159(C), pages 11-18.
    6. Boari, Francesca & Donadio, Antonio & Schiattone, Maria Immacolata & Cantore, Vito, 2015. "Particle film technology: A supplemental tool to save water," Agricultural Water Management, Elsevier, vol. 147(C), pages 154-162.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mphande, Wiza & Farrell, Aidan D. & Grove, Ivan G. & Vickers, Laura H. & Kettlewell, Peter S., 2021. "Yield improvement by antitranspirant application in droughted wheat is associated with reduced endogenous abscisic acid concentration," Agricultural Water Management, Elsevier, vol. 244(C).
    2. Xu, Yang & Zhang, Xuan & Hao, Zengchao & Hao, Fanghua & Li, Chong, 2021. "Projections of future meteorological droughts in China under CMIP6 from a three‐dimensional perspective," Agricultural Water Management, Elsevier, vol. 252(C).
    3. Joanna Kocięcka & Daniel Liberacki & Marcin Stróżecki, 2023. "The Role of Antitranspirants in Mitigating Drought Stress in Plants of the Grass Family ( Poaceae )—A Review," Sustainability, MDPI, vol. 15(12), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. AbdAllah, Ahmed M. & Mashaheet, Alsayed M. & Zobel, Richard & Burkey, Kent O., 2019. "Physiological basis for controlling water consumption by two snap beans genotypes using different anti-transpirants," Agricultural Water Management, Elsevier, vol. 214(C), pages 17-27.
    2. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    3. Abbasi, Nima & Sohrabi, Yousef & Kiani, Hawre, 2023. "Using tragacanth gum mitigated the effects of drought stress on the black cumin (Nigella sativa) plant," Agricultural Water Management, Elsevier, vol. 287(C).
    4. Ćosić, Marija & Djurović, Nevenka & Todorović, Mladen & Maletić, Radojka & Zečević, Bogoljub & Stričević, Ružica, 2015. "Effect of irrigation regime and application of kaolin on yield, quality and water use efficiency of sweet pepper," Agricultural Water Management, Elsevier, vol. 159(C), pages 139-147.
    5. Zhao, Jiongchao & Wang, Chong & Shi, Xiaoyu & Bo, Xiaozhi & Li, Shuo & Shang, Mengfei & Chen, Fu & Chu, Qingquan, 2021. "Modeling climatically suitable areas for soybean and their shifts across China," Agricultural Systems, Elsevier, vol. 192(C).
    6. Ruixia Chen & Lijian Zheng & Jinjiang Zhao & Juanjuan Ma & Xufeng Li, 2023. "Biochar Application Maintains Photosynthesis of Cabbage by Regulating Stomatal Parameters in Salt-Stressed Soil," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    7. Francisco Fontes & Ashley Gorst & Charles Palmer, 2021. "Threshold effects of extreme weather events on cereal yields in India," Climatic Change, Springer, vol. 165(1), pages 1-20, March.
    8. Li, Jingang & Chen, Jing & He, Pingru & Chen, Dan & Dai, Xiaoping & Jin, Qiu & Su, Xiaoyue, 2022. "The optimal irrigation water salinity and salt component for high-yield and good-quality of tomato in Ningxia," Agricultural Water Management, Elsevier, vol. 274(C).
    9. AbdAllah, Ahmed M. & Mashaheet, Alsayed M. & Burkey, Kent O., 2021. "Super absorbent polymers mitigate drought stress in corn (Zea mays L.) grown under rainfed conditions," Agricultural Water Management, Elsevier, vol. 254(C).
    10. Gallé, Johannes & Katzenberger, Anja, 2023. "Indian agriculture under climate change: The competing effect of temperature and rainfall anomalies," Ruhr Economic Papers 1002, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    11. Serey Sok & Nyda Chhinh & Sanara Hor & Pheakdey Nguonphan, 2021. "Climate Change Impacts on Rice Cultivation: A Comparative Study of the Tonle Sap and Mekong River," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    12. Mphande, Wiza & Farrell, Aidan D. & Grove, Ivan G. & Vickers, Laura H. & Kettlewell, Peter S., 2021. "Yield improvement by antitranspirant application in droughted wheat is associated with reduced endogenous abscisic acid concentration," Agricultural Water Management, Elsevier, vol. 244(C).
    13. Nitya Chanana-Nag & Pramod K. Aggarwal, 2020. "Woman in agriculture, and climate risks: hotspots for development," Climatic Change, Springer, vol. 158(1), pages 13-27, January.
    14. Joanna Kocięcka & Daniel Liberacki & Marcin Stróżecki, 2023. "The Role of Antitranspirants in Mitigating Drought Stress in Plants of the Grass Family ( Poaceae )—A Review," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    15. Sandeep Kandikuppa & Clark Gray, 2022. "Climate change and household debt in rural India," Climatic Change, Springer, vol. 173(3), pages 1-27, August.
    16. Pourghasemian, Nasibeh & Moradi, Rooholla & Naghizadeh, Mehdi & Landberg, Tommy, 2020. "Mitigating drought stress in sesame by foliar application of salicylic acid, beeswax waste and licorice extract," Agricultural Water Management, Elsevier, vol. 231(C).
    17. El-Kady, Amira F.Y. & Borham, Taha I., 2020. "Sustainable cultivation under saline irrigation water: Alleviating salinity stress using different management treatments on Terminalia arjuna (Roxb.) Wight & Arn," Agricultural Water Management, Elsevier, vol. 229(C).
    18. Boari, Francesca & Cantore, Vito & Di Venere, Donato & Sergio, Lucrezia & Candido, Vincenzo & Schiattone, Maria Immacolata, 2019. "Pyraclostrobin can mitigate salinity stress in tomato crop," Agricultural Water Management, Elsevier, vol. 222(C), pages 254-264.
    19. Abdelfatah, Kareem & Senn, Jonathan & Glaeser, Noemi & Terejanu, Gabriel, 2019. "Prediction and measurement update of fungal toxin geospatial uncertainty using a Stacked Gaussian process," Agricultural Systems, Elsevier, vol. 176(C).
    20. Boari, Francesca & Donadio, Antonio & Pace, Bernardo & Schiattone, Maria Immacolata & Cantore, Vito, 2016. "Kaolin improves salinity tolerance, water use efficiency and quality of tomato," Agricultural Water Management, Elsevier, vol. 167(C), pages 29-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:236:y:2020:i:c:s0378377419316282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.