IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v159y2015icp11-18.html
   My bibliography  Save this article

Film antitranspirants increase yield in drought stressed wheat plants by maintaining high grain number

Author

Listed:
  • Abdullah, Araz S.
  • Aziz, Moyassar Mohammed
  • Siddique, K.H.M.
  • Flower, K.C.

Abstract

We investigated the use of film-forming antitranspirants (AT) to reduce transpiration and alleviate the adverse effects of late-season drought on wheat (Triticum aestivum L.) growth and yield. Two experiments were conducted in a controlled-temperature glasshouse from April to November 2014, to compare two watering regimes (well watered and water deficit) and three AT treatments (unsprayed control, sprayed before boot swollen and sprayed before anthesis complete). We measured plant water use, transpiration rate, stomatal conductance and photosynthesis. Relative leaf turgor was measured in real time using a non-destructive method of leaf patch clamp pressure. Drought stress reduced daily water use, transpiration rate, stomatal conductance and leaf turgor in wheat plants after about four days. In contrast, these measurements rapidly declined soon after AT application in both well-watered and water-deficit plants. Nevertheless, once soil moisture deficit increased markedly, AT-treated water-deficit plants maintained significantly higher levels of photosynthesis than untreated plants. Drought stress reduced grain yield in unsprayed control plants by more than 40%, compared to well-watered control plants, mainly due to fewer grains per spike. In contrast, drought stress with AT application prior to the most drought-sensitive boot stage reduced yield by only 14%. These results suggest that AT has the potential to improve wheat yields with late-season drought, as is common in semiarid regions; although, more research is required to test the wider applicability of these results in field conditions.

Suggested Citation

  • Abdullah, Araz S. & Aziz, Moyassar Mohammed & Siddique, K.H.M. & Flower, K.C., 2015. "Film antitranspirants increase yield in drought stressed wheat plants by maintaining high grain number," Agricultural Water Management, Elsevier, vol. 159(C), pages 11-18.
  • Handle: RePEc:eee:agiwat:v:159:y:2015:i:c:p:11-18
    DOI: 10.1016/j.agwat.2015.05.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741530010X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.05.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Givi, J. & Prasher, S.O. & Patel, R.M., 2004. "Evaluation of pedotransfer functions in predicting the soil water contents at field capacity and wilting point," Agricultural Water Management, Elsevier, vol. 70(2), pages 83-96, November.
    2. Rüger, S. & Ehrenberger, W. & Arend, M. & Geßner, P. & Zimmermann, G. & Zimmermann, D. & Bentrup, F.-W. & Nadler, A. & Raveh, E. & Sukhorukov, V.L. & Zimmermann, U., 2010. "Comparative monitoring of temporal and spatial changes in tree water status using the non-invasive leaf patch clamp pressure probe and the pressure bomb," Agricultural Water Management, Elsevier, vol. 98(2), pages 283-290, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Kocięcka & Daniel Liberacki & Marcin Stróżecki, 2023. "The Role of Antitranspirants in Mitigating Drought Stress in Plants of the Grass Family ( Poaceae )—A Review," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    2. Mphande, Wiza & Kettlewell, Peter S. & Grove, Ivan G. & Farrell, Aidan D., 2020. "The potential of antitranspirants in drought management of arable crops: A review," Agricultural Water Management, Elsevier, vol. 236(C).
    3. Mphande, Wiza & Farrell, Aidan D. & Grove, Ivan G. & Vickers, Laura H. & Kettlewell, Peter S., 2021. "Yield improvement by antitranspirant application in droughted wheat is associated with reduced endogenous abscisic acid concentration," Agricultural Water Management, Elsevier, vol. 244(C).
    4. Ruixia Chen & Lijian Zheng & Jinjiang Zhao & Juanjuan Ma & Xufeng Li, 2023. "Biochar Application Maintains Photosynthesis of Cabbage by Regulating Stomatal Parameters in Salt-Stressed Soil," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    5. Abbasi, Nima & Sohrabi, Yousef & Kiani, Hawre, 2023. "Using tragacanth gum mitigated the effects of drought stress on the black cumin (Nigella sativa) plant," Agricultural Water Management, Elsevier, vol. 287(C).
    6. Xiang, Jie & Vickers, Laura H. & Hare, Martin C. & Kettlewell, Peter S., 2022. "Evaluation of the concentration-response relationship between film antitranspirant and yield of rapeseed (Brassica napus L.) under drought," Agricultural Water Management, Elsevier, vol. 270(C).
    7. AbdAllah, Ahmed M. & Mashaheet, Alsayed M. & Zobel, Richard & Burkey, Kent O., 2019. "Physiological basis for controlling water consumption by two snap beans genotypes using different anti-transpirants," Agricultural Water Management, Elsevier, vol. 214(C), pages 17-27.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Borek & Andrzej Bogdał & Tomasz Kowalik, 2021. "Use of Pedotransfer Functions in the Rosetta Model to Determine Saturated Hydraulic Conductivity (Ks) of Arable Soils: A Case Study," Land, MDPI, vol. 10(9), pages 1-22, September.
    2. Liao, Kaihua & Lai, Xiaoming & Zhou, Zhiwen & Liu, Ya & Zhu, Qing, 2020. "Uncertainty analysis and ensemble bias-correction method for predicting nitrate leaching in tea garden soils," Agricultural Water Management, Elsevier, vol. 237(C).
    3. Yamaç, Sevim Seda & Şeker, Cevdet & Negiş, Hamza, 2020. "Evaluation of machine learning methods to predict soil moisture constants with different combinations of soil input data for calcareous soils in a semi arid area," Agricultural Water Management, Elsevier, vol. 234(C).
    4. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernández, J.E., 2016. "Scheduling regulated deficit irrigation in a hedgerow olive orchard from leaf turgor pressure related measurements," Agricultural Water Management, Elsevier, vol. 164(P1), pages 28-37.
    5. Marino, Giulia & Pernice, Fulvio & Marra, Francesco Paolo & Caruso, Tiziano, 2016. "Validation of an online system for the continuous monitoring of tree water status for sustainable irrigation managements in olive (Olea europaea L.)," Agricultural Water Management, Elsevier, vol. 177(C), pages 298-307.
    6. Mattar, M.A. & Alazba, A.A. & Zin El-Abedin, T.K., 2015. "Forecasting furrow irrigation infiltration using artificial neural networks," Agricultural Water Management, Elsevier, vol. 148(C), pages 63-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:159:y:2015:i:c:p:11-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.