IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v231y2020ics0378377419316208.html
   My bibliography  Save this article

Mitigating drought stress in sesame by foliar application of salicylic acid, beeswax waste and licorice extract

Author

Listed:
  • Pourghasemian, Nasibeh
  • Moradi, Rooholla
  • Naghizadeh, Mehdi
  • Landberg, Tommy

Abstract

This study evaluated the effects of salicylic acid (SA), beeswax waste extract (BWE) and licorice extract (LE) as novel biostimulants, on drought-induced oxidative stress on sesame. The treatments consisted of three drought stress conditions (full irrigation, 90 % field capacity (FC); moderate stress, 60 % FC; and severe stress, 30 % FC) together with four exogenous foliar applications (control, water; LE, 5000 ppm; BWE, 2000 ppm; and SA, 1.5 mM). Plants subjected to drought stress displayed significant reduction in plant height, leaf area index, biological and seed yield, chlorophyll a and b content, quantum efficiency of photosystem II (Fv/Fm), net photosynthetic rate (Pn), stomatal conductance (gs), transpiration (Tr) and water use efficiency (WUE). Drought stress stimulated Malondialdehyde (MDA), proline, protein and carotenoid contents, and catalase (CAT), ascorbate peroxidase (APX), Guaiacol peroxidase (GPX) and glutathione reductase (GR) activity, while the exogenous foliar application of substances mitigated the oxidative damages. The alleviated effect of BWE on drought stress was more effective than those of LE and SA. In conclusion, it could be recommended that the application of the natural substances may lead to overcoming the negative effects of drought stress by regulating osmoprotectants content and antioxidant defense system, increasing mineral nutrients in plant organs and adjusting photosynthesis systems; consequently, contributing to improving the sesame productivity.

Suggested Citation

  • Pourghasemian, Nasibeh & Moradi, Rooholla & Naghizadeh, Mehdi & Landberg, Tommy, 2020. "Mitigating drought stress in sesame by foliar application of salicylic acid, beeswax waste and licorice extract," Agricultural Water Management, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:agiwat:v:231:y:2020:i:c:s0378377419316208
    DOI: 10.1016/j.agwat.2019.105997
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419316208
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105997?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaturvedi, Ashish K. & Surendran, U & Gopinath, Girish & Chandran, K Madhava & NK, Anjali & CT, Mohamed Fasil, 2019. "Elucidation of stage specific physiological sensitivity of okra to drought stress through leaf gas exchange, spectral indices, growth and yield parameters," Agricultural Water Management, Elsevier, vol. 222(C), pages 92-104.
    2. Abd El-Mageed, Taia A. & Semida, Wael M. & Rady, Mostafa M., 2017. "Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation," Agricultural Water Management, Elsevier, vol. 193(C), pages 46-54.
    3. Boari, Francesca & Donadio, Antonio & Schiattone, Maria Immacolata & Cantore, Vito, 2015. "Particle film technology: A supplemental tool to save water," Agricultural Water Management, Elsevier, vol. 147(C), pages 154-162.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Botir Khaitov & Munisa Urmonova & Aziz Karimov & Botirjon Sulaymonov & Kholik Allanov & Inomjon Israilov & Oybek Sottorov, 2021. "Licorice ( Glycyrrhiza glabra )—Growth and Phytochemical Compound Secretion in Degraded Lands under Drought Stress," Sustainability, MDPI, vol. 13(5), pages 1-11, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    2. Ćosić, Marija & Djurović, Nevenka & Todorović, Mladen & Maletić, Radojka & Zečević, Bogoljub & Stričević, Ružica, 2015. "Effect of irrigation regime and application of kaolin on yield, quality and water use efficiency of sweet pepper," Agricultural Water Management, Elsevier, vol. 159(C), pages 139-147.
    3. Ganna Trokhymenko & Yuliia Chestnykh, 2024. "Analysis of the efficiency of the application of natural coagulants," Technology audit and production reserves, PC TECHNOLOGY CENTER, vol. 2(3(76)), pages 48-52, April.
    4. Khalid F. Almutairi & Lidia Sas-Paszt & Walid F. A. Mosa, 2024. "The Role of Some Biostimulants in Improving the Productivity of Orange," Sustainability, MDPI, vol. 16(16), pages 1-14, August.
    5. Wen Song & Wei Song & Haihong Gu & Fuping Li, 2020. "Progress in the Remote Sensing Monitoring of the Ecological Environment in Mining Areas," IJERPH, MDPI, vol. 17(6), pages 1-17, March.
    6. Nita Yuniati & Kusumiyati Kusumiyati & Syariful Mubarok & Bambang Nurhadi, 2023. "Assessment of Biostimulant Derived from Moringa Leaf Extract on Growth, Physiology, Yield, and Quality of Green Chili Pepper," Sustainability, MDPI, vol. 15(9), pages 1-13, April.
    7. Estaji, Ahmad & Niknam, Fatemeh, 2020. "Foliar salicylic acid spraying effect’ on growth, seed oil content, and physiology of drought-stressed Silybum marianum L. plant," Agricultural Water Management, Elsevier, vol. 234(C).
    8. Incrocci, Luca & Thompson, Rodney B. & Fernandez-Fernandez, María Dolores & De Pascale, Stefania & Pardossi, Alberto & Stanghellini, Cecilia & Rouphael, Youssef & Gallardo, Marisa, 2020. "Irrigation management of European greenhouse vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    9. Boari, Francesca & Donadio, Antonio & Pace, Bernardo & Schiattone, Maria Immacolata & Cantore, Vito, 2016. "Kaolin improves salinity tolerance, water use efficiency and quality of tomato," Agricultural Water Management, Elsevier, vol. 167(C), pages 29-37.
    10. Bonanomi, Giuliano & Chirico, Giovanni Battista & Palladino, Mario & Gaglione, Salvatore A. & Crispo, Domenico G. & Lazzaro, Ugo & Sica, Benedetto & Cesarano, Gaspare & Ippolito, Francesca & Sarker, T, 2017. "Combined application of photo-selective mulching films and beneficial microbes affects crop yield and irrigation water productivity in intensive farming systems," Agricultural Water Management, Elsevier, vol. 184(C), pages 104-113.
    11. Nawroz Abdul-razzak Tahir & Djshwar Dhahir Lateef & Kamil Mahmud Mustafa & Kamaran Salh Rasul, 2022. "Under Natural Field Conditions, Exogenous Application of Moringa Organ Water Extract Enhanced the Growth- and Yield-Related Traits of Barley Accessions," Agriculture, MDPI, vol. 12(9), pages 1-23, September.
    12. Cantore, V. & Lechkar, O. & Karabulut, E. & Sellami, M.H. & Albrizio, R. & Boari, F. & Stellacci, A.M. & Todorovic, M., 2016. "Combined effect of deficit irrigation and strobilurin application on yield, fruit quality and water use efficiency of “cherry” tomato (Solanum lycopersicum L.)," Agricultural Water Management, Elsevier, vol. 167(C), pages 53-61.
    13. Mphande, Wiza & Kettlewell, Peter S. & Grove, Ivan G. & Farrell, Aidan D., 2020. "The potential of antitranspirants in drought management of arable crops: A review," Agricultural Water Management, Elsevier, vol. 236(C).
    14. Rady, Mohamed O.A. & Semida, Wael M. & Howladar, Saad.M. & Abd El-Mageed, Taia A., 2021. "Raised beds modulate physiological responses, yield and water use efficiency of wheat (Triticum aestivum L) under deficit irrigation," Agricultural Water Management, Elsevier, vol. 245(C).
    15. Alexandre Oliveira & Lia-Tânia Dinis & Abraão Almeida Santos & Pryanka Fontes & Marcelo Carnelossi & Jailson Fagundes & Luiz Oliveira-Júnior, 2022. "Particle Film Improves the Physiology and Productivity of Sweet Potato without Affecting Tuber’s Physicochemical Parameters," Agriculture, MDPI, vol. 12(4), pages 1-10, April.
    16. AbdAllah, Ahmed M. & Mashaheet, Alsayed M. & Zobel, Richard & Burkey, Kent O., 2019. "Physiological basis for controlling water consumption by two snap beans genotypes using different anti-transpirants," Agricultural Water Management, Elsevier, vol. 214(C), pages 17-27.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:231:y:2020:i:c:s0378377419316208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.