IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v231y2020ics0378377419318517.html
   My bibliography  Save this article

Assessment of suspended growth biological process for treatment and reuse of mixed wastewater for irrigation of edible crops under hydroponic conditions

Author

Listed:
  • Egbuikwem, Precious N.
  • Mierzwa, Jose C.
  • Saroj, Devendra P.

Abstract

Due to the increasing freshwater deterioration and demand for irrigation, there is pressing need to reclaim and reuse wastewater for agricultural operations. While this practice is gaining significant traction in developed world, it is quite rare in most developing countries with inadequate or no functional sewerage facilities and treatment systems at both municipal and industrial levels occasioned by high investment and operational costs. Consequently, wastewaters generated are in complex heterogenous mix of industrial, domestic, municipal and agricultural runoff wastewater. Biological technologies which utilize the expertise of microorganisms are considered robust, efficient and economically attractive for treatment of wide range of wastewaters and they have high suitability in developing countries. This work therefore assessed the potential of suspended growth biological process (SGBP) for reclamation and reuse of mixed wastewater composed a mixture of domestic effluent, pharmaceutical, textile, petroleum discharges and agricultural runoff for irrigation of edible crops (lettuce and beets) with plants phenological parameters as measuring indicators. The germination and phenological characteristics of crops were studied in a hydroponic unit under four irrigation regimes: tap water as control, mixed wastewater, SGBP treated wastewater, and tap water mixed with nutrient solution as upper control, for a duration of 45-d. The results proved that the SGBP treated wastewater had no negative impact on germination responses of the seed crops. However, residual recalcitrant compounds caused early stunted growth in plant root systems with resultant limited access to nutrients. Consequently, plant vegetative growth and phenological development as well as chlorophyll production were reduced. In comparison to nutrients supplemented solution, nutrients deficiency and imbalance in treated wastewater contributed to the poor development in irrigated plants. The outcomes of seed germination and plant growth experiments show a positive indication for reuse of mixed wastewater in agriculture. However, there is need for further research to explore the long-term benefits and limitations of reusing such treated wastewater.

Suggested Citation

  • Egbuikwem, Precious N. & Mierzwa, Jose C. & Saroj, Devendra P., 2020. "Assessment of suspended growth biological process for treatment and reuse of mixed wastewater for irrigation of edible crops under hydroponic conditions," Agricultural Water Management, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:agiwat:v:231:y:2020:i:c:s0378377419318517
    DOI: 10.1016/j.agwat.2020.106034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419318517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Urbano, Vanessa Ribeiro & Mendonça, Thaís Grandizoli & Bastos, Reinaldo Gaspar & Souza, Claudinei Fonseca, 2017. "Effects of treated wastewater irrigation on soil properties and lettuce yield," Agricultural Water Management, Elsevier, vol. 181(C), pages 108-115.
    2. Cirelli, G.L. & Consoli, S. & Licciardello, F. & Aiello, R. & Giuffrida, F. & Leonardi, C., 2012. "Treated municipal wastewater reuse in vegetable production," Agricultural Water Management, Elsevier, vol. 104(C), pages 163-170.
    3. Ismaila Rimi Abubakar, 2017. "Access to Sanitation Facilities among Nigerian Households: Determinants and Sustainability Implications," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
    4. Matthew Gandy, 2006. "Water, Sanitation and the Modern City: Colonial and Post-colonial Experiences in Lagos and Mumbai," Human Development Occasional Papers (1992-2007) HDOCPA-2006-06, Human Development Report Office (HDRO), United Nations Development Programme (UNDP).
    5. Libutti, Angela & Gatta, Giuseppe & Gagliardi, Anna & Vergine, Pompilio & Pollice, Alfieri & Beneduce, Luciano & Disciglio, Grazia & Tarantino, Emanuele, 2018. "Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 1-14.
    6. Elfanssi, Saloua & Ouazzani, Naaila & Mandi, Laila, 2018. "Soil properties and agro-physiological responses of alfalfa (Medicago sativa L.) irrigated by treated domestic wastewater," Agricultural Water Management, Elsevier, vol. 202(C), pages 231-240.
    7. Samuel D. Jesse & Yuanhui Zhang & Andrew J. Margenot & Paul C. Davidson, 2019. "Hydroponic Lettuce Production Using Treated Post-Hydrothermal Liquefaction Wastewater (PHW)," Sustainability, MDPI, vol. 11(13), pages 1-16, June.
    8. da Silva Cuba Carvalho, Renata & Bastos, Reinaldo Gaspar & Souza, Claudinei Fonseca, 2018. "Influence of the use of wastewater on nutrient absorption and production of lettuce grown in a hydroponic system," Agricultural Water Management, Elsevier, vol. 203(C), pages 311-321.
    9. Saliba, R. & Callieris, R. & D’Agostino, D. & Roma, R. & Scardigno, A., 2018. "Stakeholders’ attitude towards the reuse of treated wastewater for irrigation in Mediterranean agriculture," Agricultural Water Management, Elsevier, vol. 204(C), pages 60-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. M. Aishwarya & R. Vidhya, 2023. "Study on the Efficiency of a Hydroponic Treatment for Removing Organic Loading from Wastewater and Its Application as a Nutrient for the “ Amaranthus campestris ” Plant for Sustainability," Sustainability, MDPI, vol. 15(10), pages 1-13, May.
    2. Hashmat, Sherjeel & Shahid, Muhammad & Tanwir, Kashif & Abbas, Saghir & Ali, Qasim & Niazi, Nabeel Khan & Akram, Muhammad Sohail & Saleem, Muhammad Hamzah & Javed, Muhammad Tariq, 2021. "Elucidating distinct oxidative stress management, nutrient acquisition and yield responses of Pisum sativum L. fertigated with diluted and treated wastewater," Agricultural Water Management, Elsevier, vol. 247(C).
    3. Maria Josiell Nascimento da Silva & Ahmad Saeed Khan & Patrícia Verônica Pinheiro Sales Lima, 2021. "Graywater Reuse: The Effects on Income and Agricultural Production Sustainability of Family Farming Systems in the Semiarid Region of Ceará, Brazil," Journal of Agricultural Studies, Macrothink Institute, vol. 9(1), pages 44-64, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jemal Fito & Stijn W. H. Hulle, 2021. "Wastewater reclamation and reuse potentials in agriculture: towards environmental sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2949-2972, March.
    2. Feder, Frédéric, 2021. "Irrigation with treated wastewater in humid regions: Effects on Nitisols, sugarcane yield and quality," Agricultural Water Management, Elsevier, vol. 247(C).
    3. Guangshuai Wang & Zhenjie Du & Huifeng Ning & Hao Liu & Sunusi Amin Abubakar & Yang Gao, 2021. "Changes in GHG Emissions Based on Irrigation Water Quality in Short-Term Incubated Agricultural Soil of the North China Plain," Agriculture, MDPI, vol. 11(12), pages 1-12, December.
    4. Nicoleta Ungureanu & Valentin Vlăduț & Gheorghe Voicu, 2020. "Water Scarcity and Wastewater Reuse in Crop Irrigation," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    5. Manuela Moreira da Silva & Flávia C. Resende & Bárbara Freitas & Jaime Aníbal & António Martins & Amílcar Duarte, 2022. "Urban Wastewater Reuse for Citrus Irrigation in Algarve, Portugal—Environmental Benefits and Carbon Fluxes," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
    6. Chojnacka, K. & Witek-Krowiak, A. & Moustakas, K. & Skrzypczak, D. & Mikula, K. & Loizidou, M., 2020. "A transition from conventional irrigation to fertigation with reclaimed wastewater: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    7. Zalacáin, David & Martínez-Pérez, Silvia & Bienes, Ramón & García-Díaz, Andrés & Sastre-Merlín, Antonio, 2019. "Salt accumulation in soils and plants under reclaimed water irrigation in urban parks of Madrid (Spain)," Agricultural Water Management, Elsevier, vol. 213(C), pages 468-476.
    8. Odone, Giordano & Perulli, Giulio Demetrio & Mancuso, Giuseppe & Lavrnić, Stevo & Toscano, Attilio, 2024. "A novel smart fertigation system for irrigation with treated wastewater: Effects on nutrient recovery, crop and soil," Agricultural Water Management, Elsevier, vol. 297(C).
    9. Bolinches, Antonio & Blanco-Gutiérrez, Irene & Zubelzu, Sergio & Esteve, Paloma & Gómez-Ramos, Almudena, 2022. "A method for the prioritization of water reuse projects in agriculture irrigation," Agricultural Water Management, Elsevier, vol. 263(C).
    10. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    11. Vasileios A. Tzanakakis & Andrea G. Capodaglio & Andreas N. Angelakis, 2023. "Insights into Global Water Reuse Opportunities," Sustainability, MDPI, vol. 15(17), pages 1-30, August.
    12. Urbano, Vanessa Ribeiro & Mendonça, Thaís Grandizoli & Bastos, Reinaldo Gaspar & Souza, Claudinei Fonseca, 2017. "Effects of treated wastewater irrigation on soil properties and lettuce yield," Agricultural Water Management, Elsevier, vol. 181(C), pages 108-115.
    13. Andreas N. Angelakis & Mohammad Valipour & Abdelkader T. Ahmed & Vasileios Tzanakakis & Nikolaos V. Paranychianakis & Jens Krasilnikoff & Renato Drusiani & Larry Mays & Fatma El Gohary & Demetris Kout, 2021. "Water Conflicts: From Ancient to Modern Times and in the Future," Sustainability, MDPI, vol. 13(8), pages 1-31, April.
    14. Mabasa, Nyiko C. & Jones, Clifford L.W. & Laing, Mark, 2021. "The use of treated brewery effluent for salt tolerant crop irrigation," Agricultural Water Management, Elsevier, vol. 245(C).
    15. Agga Destya Arlingga, 2020. "Analysis of Willingness to Pay and Socio-Economic Factors for Sanitation Facility in Indonesia," Working Papers in Economics and Development Studies (WoPEDS) 202002, Department of Economics, Padjadjaran University, revised Jan 2020.
    16. Sana Khalid & Muhammad Shahid & Natasha & Irshad Bibi & Tania Sarwar & Ali Haidar Shah & Nabeel Khan Niazi, 2018. "A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries," IJERPH, MDPI, vol. 15(5), pages 1-36, May.
    17. Sri Irianti & Puguh Prasetyoputra, 2021. "Rural–Urban Disparities in Access to Improved Sanitation in Indonesia: A Decomposition Approach," SAGE Open, , vol. 11(3), pages 21582440211, July.
    18. Karla Lopez & Vitoria F. C. Leme & Marcin Warzecha & Paul C. Davidson, 2024. "Wastewater Nutrient Recovery via Fungal and Nitrifying Bacteria Treatment," Agriculture, MDPI, vol. 14(4), pages 1-12, April.
    19. Tang, Darrell W.S. & Bartholomeus, Ruud P. & Ritsema, Coen J., 2024. "Wastewater irrigation beneath the water table: analytical model of crop contamination risks," Agricultural Water Management, Elsevier, vol. 298(C).
    20. Oluwaseun Nubi & Stephen Morse & Richard J. Murphy, 2022. "Prospective Life Cycle Costing of Electricity Generation from Municipal Solid Waste in Nigeria," Sustainability, MDPI, vol. 14(20), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:231:y:2020:i:c:s0378377419318517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.