IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v171y2016icp40-48.html
   My bibliography  Save this article

Modeling the effects of plant density on maize productivity and water balance in the Loess Plateau of China

Author

Listed:
  • Ren, Xinmao
  • Sun, Dongbao
  • Wang, Qingsuo

Abstract

Loess Plateau of China is an area with serious soil evaporation and large inter-annual rainfall variations. Water stress is the major limiting factor for crop production in local area. Optimizing plant density is one crucial management in semi-arid dry land areas where crop growth is constrained by precipitation and a high evaporative demand. The Agricultural Production System Simulator (APSIM) was parameterized and tested with two years datasets, and then used to investigate long-term rainfed maize productivity and water balance with the historical weather records. Model application showed that water use and yield were varied because of the plant density and the inter-annual variability of precipitation. Plant density presented no influence on the evapotranspiration (ET) in extremely dry years, dry years and mild wet years but a significantly (P<0.05) influence in normal and extremely wet years. In extremely dry years, the grain yield and (WUE) were all significantly (P<0.05) decreased when plant density increased. The grain yield and WUE showed a parabolic relation with the plant density except extremely dry years. On average, the maximum yield and WUE were 6715kgha−1 and 1.81kgm−3 at 52500 plants ha−1 (D2) in dry years, 7857kgha−1 and 1.92kgm−3 at 67500 plants ha−1 (D3) in normal years, 8937kgha−1 and 2.19kgm−3 at 67500 plants ha−1 (D3) in mild wet years,and 9713kgha−1 at 82500 plants ha−1 (D4) and 2.25kgm−3 at 67500 plants ha−1 (D3) in extremely wet years, respectively. However, no significant difference was obtained for average yield or WUE when compared traditional density of 52500 plants ha−1 (D2) with higher plant density. Compared with the traditional plant density of 52500 plants ha−1 (D2), the increase of plant density significantly (P<0.05) reduced soil evaporation, only with the exception of extremely dry years. In order to get long term average benefits in the study area and similar agro-ecological zones, plant populations should not exceed 32500 plants ha−1 (D1) in extremely dry years, indeed, lower may be better. A plant density of 52500 plants ha−1 (D2) in dry years and 67500 plants ha−1 (D3) in normal years, mild wet years and extremely wet years are recommended as the optimum value, respectively.

Suggested Citation

  • Ren, Xinmao & Sun, Dongbao & Wang, Qingsuo, 2016. "Modeling the effects of plant density on maize productivity and water balance in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 171(C), pages 40-48.
  • Handle: RePEc:eee:agiwat:v:171:y:2016:i:c:p:40-48
    DOI: 10.1016/j.agwat.2016.03.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416300981
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.03.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Piper, Ernest L. & Weiss, Albert, 1990. "Evaluating CERES-Maize for reduction in plant population or leaf area during the growing season," Agricultural Systems, Elsevier, vol. 33(3), pages 199-213.
    2. Nyakudya, Innocent Wadzanayi & Stroosnijder, Leo, 2014. "Effect of rooting depth, plant density and planting date on maize (Zea mays L.) yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop," Agricultural Water Management, Elsevier, vol. 146(C), pages 280-296.
    3. Nelson, R. A. & Holzworth, D. P. & Hammer, G. L. & Hayman, P. T., 2002. "Infusing the use of seasonal climate forecasting into crop management practice in North East Australia using discussion support software," Agricultural Systems, Elsevier, vol. 74(3), pages 393-414, December.
    4. McCown, R. L. & Hammer, G. L. & Hargreaves, J. N. G. & Holzworth, D. P. & Freebairn, D. M., 1996. "APSIM: a novel software system for model development, model testing and simulation in agricultural systems research," Agricultural Systems, Elsevier, vol. 50(3), pages 255-271.
    5. Chen, Chao & Wang, Enli & Yu, Qiang, 2010. "Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1175-1184, August.
    6. Persaud, N. & Khosla, R., 1999. "Partitioning soil-water losses in different plant populations of dry-land corn," Agricultural Water Management, Elsevier, vol. 42(2), pages 157-172, November.
    7. Jiang, Xuelian & Kang, Shaozhong & Tong, Ling & Li, Fusheng & Li, Donghao & Ding, Risheng & Qiu, Rangjian, 2014. "Crop coefficient and evapotranspiration of grain maize modified by planting density in an arid region of northwest China," Agricultural Water Management, Elsevier, vol. 142(C), pages 135-143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Rongchao & Wang, Jintao & Tong, Ling & Du, Taisheng & Shukla, Manoj Kumar & Jiang, Xuelian & Li, Donghao & Qin, Yonghui & He, Liuyue & Bai, Xiaorui & Guo, Xiaoxu, 2022. "Optimizing planting density and irrigation depth of hybrid maize seed production under limited water availability," Agricultural Water Management, Elsevier, vol. 271(C).
    2. Hou, Xianqing & Li, Rong & He, Wenshou & Ma, Kun, 2020. "Effects of planting density on potato growth, yield, and water use efficiency during years with variable rainfall on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 230(C).
    3. Yin, Tao & Yao, Zhipeng & Yan, Changrong & Liu, Qi & Ding, Xiaodong & He, Wenqing, 2023. "Maize yield reduction is more strongly related to soil moisture fluctuation than soil temperature change under biodegradable film vs plastic film mulching in a semi-arid region of northern China," Agricultural Water Management, Elsevier, vol. 287(C).
    4. Chauhdary, Junaid Nawaz & Li, Hong & Akbar, Nadeem & Javaid, Maria & Rizwan, Muhammad & Akhlaq, Muhammad, 2024. "Evaluating corn production under different plant spacings through integrated modeling approach and simulating its future response under climate change scenarios," Agricultural Water Management, Elsevier, vol. 293(C).
    5. Zhang, Yuanhong & Wang, Rui & Wang, Shulan & Ning, Fang & Wang, Hao & Wen, Pengfei & Li, Ao & Dong, Zhaoyang & Xu, Zonggui & Zhang, Yujiao & Li, Jun, 2019. "Effect of planting density on deep soil water and maize yield on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    6. Chen, Zhijun & Sun, Shijun & Zhu, Zhenchuang & Jiang, Hao & Zhang, Xudong, 2019. "Assessing the effects of plant density and plastic film mulch on maize evaporation and transpiration using dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 225(C).
    7. Chen, Zhijun & Sun, Shijun & Zhu, Zhenchuang & Chi, Daocai & Huang, Guanhua, 2023. "Modeling maize water consumption and growth under plastic film mulch using an agro–hydrological model: Searching for the optimal plant density in different hydrological years," Agricultural Water Management, Elsevier, vol. 276(C).
    8. Guoqiang Zhang & Bo Ming & Dongping Shen & Ruizhi Xie & Peng Hou & Jun Xue & Keru Wang & Shaokun Li, 2021. "Optimizing Grain Yield and Water Use Efficiency Based on the Relationship between Leaf Area Index and Evapotranspiration," Agriculture, MDPI, vol. 11(4), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chauhdary, Junaid Nawaz & Li, Hong & Akbar, Nadeem & Javaid, Maria & Rizwan, Muhammad & Akhlaq, Muhammad, 2024. "Evaluating corn production under different plant spacings through integrated modeling approach and simulating its future response under climate change scenarios," Agricultural Water Management, Elsevier, vol. 293(C).
    2. Jingtao Qin & Xiaosen Wang & Xichao Fan & Mingliang Jiang & Mouchao Lv, 2022. "Whether Increasing Maize Planting Density Increases the Total Water Use Depends on Soil Water in the 0–60 cm Soil Layer in the North China Plain," Sustainability, MDPI, vol. 14(10), pages 1-13, May.
    3. Shi, Rongchao & Wang, Jintao & Tong, Ling & Du, Taisheng & Shukla, Manoj Kumar & Jiang, Xuelian & Li, Donghao & Qin, Yonghui & He, Liuyue & Bai, Xiaorui & Guo, Xiaoxu, 2022. "Optimizing planting density and irrigation depth of hybrid maize seed production under limited water availability," Agricultural Water Management, Elsevier, vol. 271(C).
    4. Zhao, Gang & Bryan, Brett A. & Song, Xiaodong, 2014. "Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters," Ecological Modelling, Elsevier, vol. 279(C), pages 1-11.
    5. Yunfeng Li & Quanqing Feng & Dongwei Li & Mingfa Li & Huifeng Ning & Qisheng Han & Abdoul Kader Mounkaila Hamani & Yang Gao & Jingsheng Sun, 2022. "Water-Salt Thresholds of Cotton ( Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    6. Hisham Eldardiry & Emad Habib & David M. Borrok, 2020. "Accounting for Inter-Annual and Seasonal Variability in Assessment of Water Supply Stress: Perspectives from a humid region in the USA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2517-2534, June.
    7. Qureshi, Muhammad Ejaz & Arunakumaren, J. & Bajracharya, K. & Wegener, Malcolm K. & Qureshi, S.E. & Bristow, Keith L., 2002. "Economic and environmental impacts of groundwater management scenarios in Burdekin Delta," 2002 Conference (46th), February 13-15, 2002, Canberra, Australia 125148, Australian Agricultural and Resource Economics Society.
    8. Festo Richard Silungwe & Frieder Graef & Sonoko Dorothea Bellingrath-Kimura & Emmanuel A Chilagane & Siza Donald Tumbo & Fredrick Cassian Kahimba & Marcos Alberto Lana, 2019. "Modelling Rainfed Pearl Millet Yield Sensitivity to Abiotic Stresses in Semi-Arid Central Tanzania, Eastern Africa," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    9. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
    10. Negm, L.M. & Youssef, M.A. & Skaggs, R.W. & Chescheir, G.M. & Jones, J., 2014. "DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land," Agricultural Water Management, Elsevier, vol. 137(C), pages 30-45.
    11. Moojen, Fernanda Gomes & Ryschawy, Julie & dos Santos, Davi Teixeira & Barth Neto, Armindo & Vieira, Paulo Cardozo & Portella, Elisa & de Faccio Carvalho, Paulo César, 2022. "The farm coaching experience to support the transition to integrated crop–livestock systems: From gaming to action," Agricultural Systems, Elsevier, vol. 196(C).
    12. Carla Roncoli & Christine Jost & Paul Kirshen & Moussa Sanon & Keith Ingram & Mark Woodin & Léopold Somé & Frédéric Ouattara & Bienvenue Sanfo & Ciriaque Sia & Pascal Yaka & Gerrit Hoogenboom, 2009. "From accessing to assessing forecasts: an end-to-end study of participatory climate forecast dissemination in Burkina Faso (West Africa)," Climatic Change, Springer, vol. 92(3), pages 433-460, February.
    13. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    14. Jing Wang & Feng Fang & Qiang Zhang & Jinsong Wang & Yubi Yao & Wei Wang, 2016. "Risk evaluation of agricultural disaster impacts on food production in southern China by probability density method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1605-1634, September.
    15. Libardi, Luís Guilherme Polizel & de Faria, Rogério Teixeira & Dalri, Alexandre Barcellos & de Souza Rolim, Glauco & Palaretti, Luiz Fabiano & Coelho, Anderson Prates & Martins, Izabela Paiva, 2019. "Evapotranspiration and crop coefficient (Kc) of pre-sprouted sugarcane plantlets for greenhouse irrigation management," Agricultural Water Management, Elsevier, vol. 212(C), pages 306-316.
    16. Jagadish Padhiary & Kanhu Charan Patra & Sonam Sandeep Dash, 2022. "A Novel Approach to Identify the Characteristics of Drought under Future Climate Change Scenario," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5163-5189, October.
    17. Feike, Til & Henseler, Martin, 2017. "Multiple Policy Instruments for Sustainable Water Management in Crop Production - A Modeling Study for the Chinese Aksu-Tarim Region," Ecological Economics, Elsevier, vol. 135(C), pages 42-54.
    18. Unknown, 1997. "A New Soil Conservation Methodology and Application to Cropping Systems in Tropical Steeplands: A comparative synthesis of results obtained in ACIAR Project PN 9201," Technical Reports 113906, Australian Centre for International Agricultural Research.
    19. Meinke, H. & Baethgen, W. E. & Carberry, P. S. & Donatelli, M. & Hammer, G. L. & Selvaraju, R. & Stockle, C. O., 2001. "Increasing profits and reducing risks in crop production using participatory systems simulation approaches," Agricultural Systems, Elsevier, vol. 70(2-3), pages 493-513.
    20. Probert, M. E. & Dimes, J. P. & Keating, B. A. & Dalal, R. C. & Strong, W. M., 1998. "APSIM's water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems," Agricultural Systems, Elsevier, vol. 56(1), pages 1-28, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:171:y:2016:i:c:p:40-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.