IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v226y2019ics0378377419300563.html
   My bibliography  Save this article

Expansion of maize production in a semi-arid region of Argentina: Climatic and edaphic constraints and their implications on crop management

Author

Listed:
  • Rotili, Diego Hernán
  • Giorno, Agustín
  • Tognetti, Pedro Maximiliano
  • Maddonni, Gustavo Ángel

Abstract

The Southwestern Pampas (SWP) is a semi-arid region of Argentina with the presence of a widespread caliche layer that limits soil depth. In this region, maize production has recently expanded with scarce information on appropriate management practices. The objective of this work was to provide an agro-climatic and eco-physiological framework of cultural changes of maize cropping systems of the SWP and the main implications of the climatic and edaphic constraints on crop management decisions. The work combined i) public data of regional maize cultivated area for the period 2008–2015 alongside with farmers’ cropping management trends related to sowing dates and plant population density (PPD); ii) on-field experimental data generated from trials in different sites in the SWP sown at different dates, soil depths and PPDs; and iii) a crop water-economy characterization with a probabilistic approach by means of historical climatic series (identifying the El Niño Southern Oscillation (ENSO) phases) in three locations in the SWP across a longitudinal range between the 800 mm and 600 mm isohyets. In the 2008–2015 period, maize area increased five-fold, median sowing date delayed one month and PPD decreased from ca. 7.2 pl m-2 to 3.4 pl m-2. Late-sown crops (7564 kg ha-1; CV = 19%) out-yielded early-sown crops (5888 kg ha-1; CV = 42%) with less variability across environments. Crop evapotranspiration during the cycle (ETacycle) slightly decreased (P50 = 3–32 mm lower) with the delay of sowing, but the proportion of crop evapotranspiration during the reproductive period was significantly higher. ETacycle of late crops did not vary within PPD, but transpiration per plant decreased with PPD and increased in deep soils, especially at low densities. The impacts of sowing date and PPD did not vary among ENSO phases, not supporting the use of ENSO as a decision criterion for maize management in the SWP.

Suggested Citation

  • Rotili, Diego Hernán & Giorno, Agustín & Tognetti, Pedro Maximiliano & Maddonni, Gustavo Ángel, 2019. "Expansion of maize production in a semi-arid region of Argentina: Climatic and edaphic constraints and their implications on crop management," Agricultural Water Management, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:agiwat:v:226:y:2019:i:c:s0378377419300563
    DOI: 10.1016/j.agwat.2019.105761
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419300563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105761?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florio, E.L. & Mercau, J.L. & Jobbágy, E.G. & Nosetto, M.D., 2014. "Interactive effects of water-table depth, rainfall variation, and sowing date on maize production in the Western Pampas," Agricultural Water Management, Elsevier, vol. 146(C), pages 75-83.
    2. Viglizzo, E. F. & Roberto, Z. E., 1998. "On trade-offs in low-input agroecosystems," Agricultural Systems, Elsevier, vol. 56(2), pages 253-264, February.
    3. Mercau, J. L. & Sadras, V. O. & Satorre, E. H. & Messina, C. & Balbi, C. & Uribelarrea, M. & Hall, A. J., 2001. "On-farm assessment of regional and seasonal variation in sunflower yield in Argentina," Agricultural Systems, Elsevier, vol. 67(2), pages 83-103, February.
    4. Kang, Shaozhong & Gu, Binjie & Du, Taisheng & Zhang, Jianhua, 2003. "Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region," Agricultural Water Management, Elsevier, vol. 59(3), pages 239-254, April.
    5. Bert, Federico E. & Satorre, Emilio H. & Toranzo, Fernando Ruiz & Podesta, Guillermo P., 2006. "Climatic information and decision-making in maize crop production systems of the Argentinean Pampas," Agricultural Systems, Elsevier, vol. 88(2-3), pages 180-204, June.
    6. Podesta, Guillermo & Letson, David & Messina, Carlos & Royce, Fred & Ferreyra, R. Andres & Jones, James & Hansen, James & Llovet, Ignacio & Grondona, Martin & O'Brien, James J., 2002. "Use of ENSO-related climate information in agricultural decision making in Argentina: a pilot experience," Agricultural Systems, Elsevier, vol. 74(3), pages 371-392, December.
    7. Sadras, V. O. & Hall, A. J., 1989. "Patterns of water availability for sunflower crops in semi-arid Central Argentina. A simulation-based evaluation of their interactions with cropping strategies and cultivar traits," Agricultural Systems, Elsevier, vol. 31(2), pages 221-238.
    8. Jiang, Xuelian & Kang, Shaozhong & Tong, Ling & Li, Fusheng & Li, Donghao & Ding, Risheng & Qiu, Rangjian, 2014. "Crop coefficient and evapotranspiration of grain maize modified by planting density in an arid region of northwest China," Agricultural Water Management, Elsevier, vol. 142(C), pages 135-143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hernández, M.D. & Alfonso, C. & Echarte, M.M. & Cerrudo, A. & Echarte, L., 2021. "Maize transpiration efficiency increases with N supply or higher plant densities," Agricultural Water Management, Elsevier, vol. 250(C).
    2. Rotili, Diego Hernán & Abeledo, L. Gabriela & deVoil, Peter & Rodríguez, Daniel & Maddonni, Gustavo Ángel, 2021. "Exploring the effect of tillers on the water economy, plant growth and kernel set of low-density maize crops," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Chen, Hang & Meng, Fei & Yu, Zhenning & Tan, Yongzhong, 2022. "Spatial–temporal characteristics and influencing factors of farmland expansion in different agricultural regions of Heilongjiang Province, China," Land Use Policy, Elsevier, vol. 115(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Shujing & Li, Sien & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng & Wang, Yahui & Guo, Hui, 2019. "Transpiration of female and male parents of seed maize in northwest China," Agricultural Water Management, Elsevier, vol. 213(C), pages 397-409.
    2. Zhang, Fan & Zhang, Chenglong & Yan, Zehao & Guo, Shanshan & Wang, Youzhi & Guo, Ping, 2018. "An interval nonlinear multiobjective programming model with fuzzy-interval credibility constraint for crop monthly water allocation," Agricultural Water Management, Elsevier, vol. 209(C), pages 123-133.
    3. Tang, Yikuan & Zhang, Fan & Wang, Sufen & Zhang, Xiaodong & Guo, Shanshan & Guo, Ping, 2019. "A distributed interval nonlinear multiobjective programming approach for optimal irrigation water management in an arid area," Agricultural Water Management, Elsevier, vol. 220(C), pages 13-26.
    4. Feng, Yu & Hao, Weiping & Gao, Lili & Li, Haoru & Gong, Daozhi & Cui, Ningbo, 2019. "Comparison of maize water consumption at different scales between mulched and non-mulched croplands," Agricultural Water Management, Elsevier, vol. 216(C), pages 315-324.
    5. Cabrera, Victor E. & Letson, David & Podesta, Guillermo, 2007. "The value of climate information when farm programs matter," Agricultural Systems, Elsevier, vol. 93(1-3), pages 25-42, March.
    6. Jingtao Qin & Xiaosen Wang & Xichao Fan & Mingliang Jiang & Mouchao Lv, 2022. "Whether Increasing Maize Planting Density Increases the Total Water Use Depends on Soil Water in the 0–60 cm Soil Layer in the North China Plain," Sustainability, MDPI, vol. 14(10), pages 1-13, May.
    7. Jiang, Xuelian & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Comas, Louise, 2016. "Evapotranspiration partitioning and variation of sap flow in female and male parents of maize for hybrid seed production in arid region," Agricultural Water Management, Elsevier, vol. 176(C), pages 132-141.
    8. Zhao, Yin & Mao, Xiaomin & Shukla, Manoj K. & Tian, Fei & Hou, Mengjie & Zhang, Tong & Li, Sien, 2021. "How does film mulching modify available energy, evapotranspiration, and crop coefficient during the seed–maize growing season in northwest China?," Agricultural Water Management, Elsevier, vol. 245(C).
    9. World Bank, 2010. "Improving Water Management in Rainfed Agriculture : Issues and Options in Water-Constrained Production Systems," World Bank Publications - Reports 13028, The World Bank Group.
    10. Feng, Yu & Gong, Daozhi & Mei, Xurong & Hao, Weiping & Tang, Dahua & Cui, Ningbo, 2017. "Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 191(C), pages 193-206.
    11. Cao, Juan & Zhang, Zhao & Tao, Fulu & Chen, Yi & Luo, Xiangzhong & Xie, Jun, 2023. "Forecasting global crop yields based on El Nino Southern Oscillation early signals," Agricultural Systems, Elsevier, vol. 205(C).
    12. Nasca, J.A. & Feldkamp, C.R. & Arroquy, J.I. & Colombatto, D., 2015. "Efficiency and stability in subtropical beef cattle grazing systems in the northwest of Argentina," Agricultural Systems, Elsevier, vol. 133(C), pages 85-96.
    13. Reza Esmaeili & Rahim Mohammadian & Hossein Heidari Sharif Abad & Ghorban Noor Mohammadi, 2022. "Improving quantity and quality of sugar beet yield using agronomic methods in summer cultivation," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 68(8), pages 347-357.
    14. Huang, Kaixing & Wang, Jinxia & Huang, Jikun & Findlay, Christopher, 2018. "The potential benefits of agricultural adaptation to warming in China in the long run," Environment and Development Economics, Cambridge University Press, vol. 23(2), pages 139-160, April.
    15. Carla Roncoli & Christine Jost & Paul Kirshen & Moussa Sanon & Keith Ingram & Mark Woodin & Léopold Somé & Frédéric Ouattara & Bienvenue Sanfo & Ciriaque Sia & Pascal Yaka & Gerrit Hoogenboom, 2009. "From accessing to assessing forecasts: an end-to-end study of participatory climate forecast dissemination in Burkina Faso (West Africa)," Climatic Change, Springer, vol. 92(3), pages 433-460, February.
    16. Nadolnyak, Denis A. & Novak, James L. & Vedenov, Dmitry V. & Paz, Joel O. & Fraisse, Clyde W. & Hoogenboom, Gerrit, 2007. "Non-Parametric Analysis of ENSO Impacts on Yield Distributions: Implications for GRP Contract Design," 2007 Annual Meeting, February 4-7, 2007, Mobile, Alabama 34858, Southern Agricultural Economics Association.
    17. Wang, Weishu & Rong, Yao & Dai, Xiaoqin & Zhang, Chenglong & Wang, Chaozi & Huo, Zailin, 2024. "Variation and attribution of energy distribution for salinized sunflower farmland in arid area," Agricultural Water Management, Elsevier, vol. 297(C).
    18. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    19. Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields," Agricultural Water Management, Elsevier, vol. 181(C), pages 23-34.
    20. Libardi, Luís Guilherme Polizel & de Faria, Rogério Teixeira & Dalri, Alexandre Barcellos & de Souza Rolim, Glauco & Palaretti, Luiz Fabiano & Coelho, Anderson Prates & Martins, Izabela Paiva, 2019. "Evapotranspiration and crop coefficient (Kc) of pre-sprouted sugarcane plantlets for greenhouse irrigation management," Agricultural Water Management, Elsevier, vol. 212(C), pages 306-316.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:226:y:2019:i:c:s0378377419300563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.