IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7593-d844831.html
   My bibliography  Save this article

Field-Scale Evaluation of the Soil Quality Index as Influenced by Dairy Manure and Inorganic Fertilizers

Author

Listed:
  • Ekrem Ozlu

    (Great Lakes Bioenergy Research Center, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI 49060, USA
    Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA)

  • Gafur Gozukara

    (Department of Soil Science and Plant Nutrition, Eskisehir Osmangazi University, Eskişehir 26040, Türkiye)

  • Mert Acar

    (Department of Soil Science and Plant Nutrition, Çukurova University, Adana 01330, Türkiye)

  • Serdar Bilen

    (Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye)

  • Emre Babur

    (Department of Forest Engineering, Faculty of Forestry, Kahramanmaras Sutcu Imam University, Kahramanmaras 46050, Türkiye
    Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA)

Abstract

Long-term addition of manure increases soil organic carbon (SOC), provides nutrient supply, enhances soil quality and crop yield (CY), but may also increase global warming potential (GWP). In this study, a long-term experiment was conducted to investigate impacts of organic dairy manure and inorganic fertilizer on the spatial distribution of soil quality indicators in field scale. The experiment was initiated in 2008 (seven years), and includes three manure and two inorganic fertilizer treatments along with a control (no manure or no inorganic fertilizer addition). The study was set into a randomized complete block design with six treatments and four replications in a total of 24 plots with an equal size each of 6 × 18 m (108 m 2 ). Soil physical, chemical and biological properties (total 26 properties) were considered as the total data set and principal component analysis (PCA) was used to determine long-term organic and inorganic fertilizer-induced changes in soil quality. Ordinary kriging interpolation methods were used to predict the spatial distributions of soil quality index (SQI) and mean soil quality values were compared with fertilization treatments by using Duncan’s test. Results showed that most measured soil quality index parameters showed significant differences ( p < 0.05). The long-term dairy manure applications had positive impacts on soil quality index parameters where overall SQI scores were higher under high manure (HM) compared to medium manure (MM), low manure (LM), medium fertilizer (MF), high fertilizer (HF), control (CK) by 25%, 27%, 47%, 55% and 92%. A similar trend was observed for CY and GWP. This indicates that long-term dairy manure can be an option to increase SQI values and provide higher CY, however, this may lead to greater GWP.

Suggested Citation

  • Ekrem Ozlu & Gafur Gozukara & Mert Acar & Serdar Bilen & Emre Babur, 2022. "Field-Scale Evaluation of the Soil Quality Index as Influenced by Dairy Manure and Inorganic Fertilizers," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7593-:d:844831
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7593/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7593/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhanjun Liu & Qinlei Rong & Wei Zhou & Guoqing Liang, 2017. "Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Xu & Siqi Yi & Yong Zhou & Qing Li & Yizhu Liu, 2022. "Temporal and Spatial Changes and Driving Forces of Soil Properties in Subtropical Mountainous Areas from 2017 to 2020: A Case Study of Baokang County, Hubei Province, China," Land, MDPI, vol. 11(10), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mugizi, Francisco M.P. & Matsumoto, Tomoya, 2021. "A curse or a blessing? Population pressure and soil quality in Sub-Saharan Africa: Evidence from rural Uganda," Ecological Economics, Elsevier, vol. 179(C).
    2. Gai, Xiapu & Liu, Hongbin & Liu, Jian & Zhai, Limei & Yang, Bo & Wu, Shuxia & Ren, Tianzhi & Lei, Qiuliang & Wang, Hongyuan, 2018. "Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain," Agricultural Water Management, Elsevier, vol. 208(C), pages 384-392.
    3. Haiming Tang & Yilan Xu & Chao Li & Lihong Shi & Li Wen & Weiyan Li & Kaikai Cheng & Xiaoping Xiao, 2022. "Effects of Different Long-Term Fertilizer Management Systems on Soil Microbial Biomass Turnover in a Double-Cropping Rice Field in Southern China," Agriculture, MDPI, vol. 12(10), pages 1-10, October.
    4. Jingnan Li & Haiyang Zhang & Li Zheng, 2023. "Influence of Organic Amendments Based on Garden Waste for Microbial Community Growth in Coastal Saline Soil," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    5. Guozhu Ma & Shenghai Cheng & Wenli He & Yixuan Dong & Shaowu Qi & Naimei Tu & Weixu Tao, 2023. "Effects of Organic and Inorganic Fertilizers on Soil Nutrient Conditions in Rice Fields with Varying Soil Fertility," Land, MDPI, vol. 12(5), pages 1-17, May.
    6. Jingnan Li & Xiangyang Sun & Suyan Li, 2020. "Effects of Garden Waste Compost and Bentonite on Muddy Coastal Saline Soil," Sustainability, MDPI, vol. 12(9), pages 1-13, April.
    7. Qin Zhang & Yutao Peng & Jingxin Wang & Longcheng Li & Danjun Yao & Aihua Zhang & Wenhua Wang & Shengjian Kuang & Heng Liao & Qing Zhu & Bangxi Zhang, 2021. "Improving Ecological Functions and Ornamental Values of Traditional Pear Orchard by Co-Planting of Green Manures of Astragalus sinicus L. and Lathyrus cicera L," Sustainability, MDPI, vol. 13(23), pages 1-11, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7593-:d:844831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.