IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v203y2018icp197-206.html
   My bibliography  Save this article

Modelling Ca2+ accumulation in soilless zucchini crops: Physiological and agronomical responses

Author

Listed:
  • Neocleous, Damianos
  • Savvas, Dimitrios

Abstract

Soilless zucchini (Cucurbita pepo L.) crops were grown in two distinct cropping periods (spring-summer; SS and autumn-winter; AW) using irrigation water with different Ca2+ concentrations (1.5, 3, 4.5 and 6 mM). The objectives of this study were to: (i) mathematically correlate the accumulation of Ca2+ in the root environment with the respective Ca2+/water uptake ratio (namely uptake concentration; UC), and (ii) determine the UC of macronutrients (i.e., N, P, K, Ca and Mg) under these conditions. Equations of the literature, initially developed to predict NaCl accumulation in a closed hydroponic system, were further extended to fit experimental results. The evolution of Ca2+ accumulation in the drainage exhibited a sigmoid pattern with time and the relationship between the concentration of Ca2+ in the root zone and the corresponding uptake ratio Ca2+/water was better described by curvilinear functions. Validation of the model showed a very good agreement between simulated and measured values. Increasing Ca2+ levels affected both tissue concentrations and UC of Ca and N, but this was not the case for P, K, and Mg. Photosynthesis, growth, yield and plant water uptake were restricted (avg. 15% decrease) at high external Ca2+ levels, due to high total salt concentration (EC) in the recycled solution (4.2–5.5 dS m−1). Fruit quality attributes, however, remained unaffected by treatments with the exception of fruit nitrate content. The empirical model parameterized and tested in this work may serve as a tool to predict Ca2+ ion concentrations in the root environment of zucchini crops as relationships of the water absorbed by the crop. Finally, the results showed that in soilless zucchini crops with zero discharge of fertigation effluents, there is no compelling reason not to use irrigation water resources with Ca2+ concentration up to 3 mM.

Suggested Citation

  • Neocleous, Damianos & Savvas, Dimitrios, 2018. "Modelling Ca2+ accumulation in soilless zucchini crops: Physiological and agronomical responses," Agricultural Water Management, Elsevier, vol. 203(C), pages 197-206.
  • Handle: RePEc:eee:agiwat:v:203:y:2018:i:c:p:197-206
    DOI: 10.1016/j.agwat.2018.03.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418301719
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.03.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Varlagas, H. & Savvas, D. & Mouzakis, G. & Liotsos, C. & Karapanos, I. & Sigrimis, N., 2010. "Modelling uptake of Na+ and Cl- by tomato in closed-cycle cultivation systems as influenced by irrigation water salinity," Agricultural Water Management, Elsevier, vol. 97(9), pages 1242-1250, September.
    2. Rouphael, Youssef & Cardarelli, Mariateresa & Rea, Elvira & Battistelli, Alberto & Colla, Giuseppe, 2006. "Comparison of the subirrigation and drip-irrigation systems for greenhouse zucchini squash production using saline and non-saline nutrient solutions," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 99-117, April.
    3. Neocleous, Damianos & Savvas, Dimitrios, 2016. "NaCl accumulation and macronutrient uptake by a melon crop in a closed hydroponic system in relation to water uptake," Agricultural Water Management, Elsevier, vol. 165(C), pages 22-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neocleous, Damianos & Nikolaou, Georgios & Ntatsi, Georgia & Savvas, Dimitrios, 2021. "Nitrate supply limitations in tomato crops grown in a chloride-amended recirculating nutrient solution," Agricultural Water Management, Elsevier, vol. 258(C).
    2. Savvas, Dimitrios & Giannothanasis, Evangelos & Ntanasi, Theodora & Karavidas, Ioannis & Drakatos, Stefanos & Panagiotakis, Ioannis & Neocleous, Damianos & Ntatsi, Georgia, 2023. "Improvement and validation of a decision support system to maintain optimal nutrient levels in crops grown in closed-loop soilless systems," Agricultural Water Management, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neocleous, Damianos & Nikolaou, Georgios & Ntatsi, Georgia & Savvas, Dimitrios, 2021. "Nitrate supply limitations in tomato crops grown in a chloride-amended recirculating nutrient solution," Agricultural Water Management, Elsevier, vol. 258(C).
    2. Zambon, Flavia Tabay & Meadows, Taylor D. & Eckman, Megan A. & Rodriguez, Katya Michelle Rivera & Ferrarezi, Rhuanito Soranz, 2022. "Automated ebb-and-flow subirrigation accelerates citrus liner production in treepots," Agricultural Water Management, Elsevier, vol. 262(C).
    3. Ferrarezi, Rhuanito Soranz & Testezlaf, Roberto, 2017. "Automated ebb-and-flow subirrigation for citrus liners production. I. Plant growth," Agricultural Water Management, Elsevier, vol. 192(C), pages 45-57.
    4. Venezia, Accursio & Colla, Giuseppe & Di Cesare, Carlo & Stipic, Marija & Massa, Daniele, 2022. "The effect of different fertigation strategies on salinity and nutrient dynamics of cherry tomato grown in a gutter subirrigation system," Agricultural Water Management, Elsevier, vol. 262(C).
    5. Yang, Zhi & Kong, Tingting & Xie, Jiarui & Yang, Taiguo & Jiang, Yu & Feng, Ziqi & Zhang, Zhi, 2023. "Appropriate water and fertilizer supply can increase yield by promoting growth while ensuring the soil ecological environment in melon production," Agricultural Water Management, Elsevier, vol. 289(C).
    6. Massa, Daniele & Magán, Juan José & Montesano, Francesco Fabiano & Tzortzakis, Nikolaos, 2020. "Minimizing water and nutrient losses from soilless cropping in southern Europe," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Neocleous, Damianos & Savvas, Dimitrios, 2016. "NaCl accumulation and macronutrient uptake by a melon crop in a closed hydroponic system in relation to water uptake," Agricultural Water Management, Elsevier, vol. 165(C), pages 22-32.
    8. Savvas, D. & Stamati, E. & Tsirogiannis, I.L. & Mantzos, N. & Barouchas, P.E. & Katsoulas, N. & Kittas, C., 2007. "Interactions between salinity and irrigation frequency in greenhouse pepper grown in closed-cycle hydroponic systems," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 102-111, July.
    9. Sara Rajabi Hamedani & Youssef Rouphael & Giuseppe Colla & Andrea Colantoni & Mariateresa Cardarelli, 2020. "Biostimulants as a Tool for Improving Environmental Sustainability of Greenhouse Vegetable Crops," Sustainability, MDPI, vol. 12(12), pages 1-10, June.
    10. Ferrarezi, Rhuanito Soranz & Testezlaf, Roberto, 2017. "Automated ebb-and-flow subirrigation for citrus liners production. II. Pests, diseases and nutrient concentration," Agricultural Water Management, Elsevier, vol. 192(C), pages 21-32.
    11. Giannothanasis, Evangelos & Spanoudaki, Ekaterini & Kinnas, Spyridon & Ntatsi, Georgia & Voogt, Wim & Savvas, Dimitrios, 2024. "Development and validation of an innovative algorithm for sodium accumulation management in closed-loop soilless culture systems," Agricultural Water Management, Elsevier, vol. 301(C).
    12. Jani, Arun D. & Meadows, Taylor D. & Eckman, Megan A. & Ferrarezi, Rhuanito Soranz, 2021. "Automated ebb-and-flow subirrigation conserves water and enhances citrus liner growth compared to capillary mat and overhead irrigation methods," Agricultural Water Management, Elsevier, vol. 246(C).
    13. Cedeño, J. & Magán, J.J. & Thompson, R.B. & Fernández, M.D. & Gallardo, M., 2023. "Reducing nutrient loss in drainage from tomato grown in free-draining substrate in greenhouses using dynamic nutrient management," Agricultural Water Management, Elsevier, vol. 287(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:203:y:2018:i:c:p:197-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.