IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v258y2021ics0378377421004406.html
   My bibliography  Save this article

Nitrate supply limitations in tomato crops grown in a chloride-amended recirculating nutrient solution

Author

Listed:
  • Neocleous, Damianos
  • Nikolaou, Georgios
  • Ntatsi, Georgia
  • Savvas, Dimitrios

Abstract

Partial substitution of nitrate (NO3-) with chloride (Cl-) in the nutrient solution supplied to tomato crops (beefsteak and cherry types), grown in a closed hydroponic system, maintained nitrogen (N)- and carbon (C)- assimilation status in plants despite N-supply limitations. Lowering NO3- ions (90% of total N) supply to 2/3 of the standard recommendations, which was electrochemically compensated for by an equivalent increase of the Cl- concentration in the replenishment nutrient solution (RNS), increased N use efficiency (kg produce kg−1 N supply) and decreased NO3- in the drainage without compromising growth, yield and nutritional quality. Tomato plants supplied with Cl--amended RNS increased leaf Cl- content to macronutrient level (35 mg g−1 dry weight), retaining photosynthetic rates and crop yield potential at lower stomatal conductivity and transpiration. Nutrient to water uptake ratios (mass of nutrient per water volume absorbed), which are commonly termed ‘uptake concentrations’, were defined in different cropping seasons and ranged as follows: 12.1–13.5 (Nitrogen- NO3-+NH4+), 1.25–1.35 (Phosphorus-P), 6.1–6.3 (Potassium-K), 3.6–4.0 (Calcium-Ca), 1.0–1.3 (Magnesium-Mg, mmol L−1), 13.0–14.3 (Iron-Fe), 7.6–8.4 (Manganese-Mn), 5.1–5.2 (Zinc-Zn) and 0.7–0.9 (Copper-Cu, μmol L−1). The levels of N and Cl- supply had no impact on the uptake concentrations. This study suggests that replacing 1/3 of the standard NO3- supply by Cl- in closed hydroponic tomato crops enhances N use by two-fold and eliminates NO3- losses to one-half, with no significant effects on assimilation processes and fruit biomass production, suggesting that Cl- at appropriate concentrations is not only an essential micronutrient but also a beneficial macronutrient. The obtained uptake concentrations may be used through on-line operating decision support systems to optimize nutrient supply in hydroponic cultivations in Mediterranean greenhouses.

Suggested Citation

  • Neocleous, Damianos & Nikolaou, Georgios & Ntatsi, Georgia & Savvas, Dimitrios, 2021. "Nitrate supply limitations in tomato crops grown in a chloride-amended recirculating nutrient solution," Agricultural Water Management, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:agiwat:v:258:y:2021:i:c:s0378377421004406
    DOI: 10.1016/j.agwat.2021.107163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421004406
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neocleous, Damianos & Savvas, Dimitrios, 2018. "Modelling Ca2+ accumulation in soilless zucchini crops: Physiological and agronomical responses," Agricultural Water Management, Elsevier, vol. 203(C), pages 197-206.
    2. Varlagas, H. & Savvas, D. & Mouzakis, G. & Liotsos, C. & Karapanos, I. & Sigrimis, N., 2010. "Modelling uptake of Na+ and Cl- by tomato in closed-cycle cultivation systems as influenced by irrigation water salinity," Agricultural Water Management, Elsevier, vol. 97(9), pages 1242-1250, September.
    3. Neocleous, Damianos & Savvas, Dimitrios, 2016. "NaCl accumulation and macronutrient uptake by a melon crop in a closed hydroponic system in relation to water uptake," Agricultural Water Management, Elsevier, vol. 165(C), pages 22-32.
    4. Magán, J.J. & Gallardo, M. & Thompson, R.B. & Lorenzo, P., 2008. "Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 95(9), pages 1041-1055, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lévesque, Serge & Graham, Thomas & Bejan, Dorin & Dixon, Mike, 2022. "Comparative analysis of regenerative in situ electrochemical hypochlorination and conventional water disinfection technologies for growing ornamental crops with recirculating hydroponics," Agricultural Water Management, Elsevier, vol. 269(C).
    2. Chrysargyris, Antonios & Tzortzakis, Nikolaos, 2023. "Optimising fertigation of hydroponically grown sowthistle (Sonchus oleraceus L.): The impact of the nitrogen source and supply concentration," Agricultural Water Management, Elsevier, vol. 289(C).
    3. Savvas, Dimitrios & Giannothanasis, Evangelos & Ntanasi, Theodora & Karavidas, Ioannis & Drakatos, Stefanos & Panagiotakis, Ioannis & Neocleous, Damianos & Ntatsi, Georgia, 2023. "Improvement and validation of a decision support system to maintain optimal nutrient levels in crops grown in closed-loop soilless systems," Agricultural Water Management, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neocleous, Damianos & Savvas, Dimitrios, 2018. "Modelling Ca2+ accumulation in soilless zucchini crops: Physiological and agronomical responses," Agricultural Water Management, Elsevier, vol. 203(C), pages 197-206.
    2. Cedeño, J. & Magán, J.J. & Thompson, R.B. & Fernández, M.D. & Gallardo, M., 2023. "Reducing nutrient loss in drainage from tomato grown in free-draining substrate in greenhouses using dynamic nutrient management," Agricultural Water Management, Elsevier, vol. 287(C).
    3. Pedro Garcia-Caparros & Juana Isabel Contreras & Rafael Baeza & Maria Luz Segura & Maria Teresa Lao, 2017. "Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    4. Li, Jingang & He, Pingru & Chen, Jing & Hamad, Amar Ali Adam & Dai, Xiaoping & Jin, Qiu & Ding, Siyu, 2023. "Tomato performance and changes in soil chemistry in response to salinity and Na/Ca ratio of irrigation water," Agricultural Water Management, Elsevier, vol. 285(C).
    5. Gallardo, M. & Thompson, R.B. & Rodríguez, J.S. & Rodríguez, F. & Fernández, M.D. & Sánchez, J.A. & Magán, J.J., 2009. "Simulation of transpiration, drainage, N uptake, nitrate leaching, and N uptake concentration in tomato grown in open substrate," Agricultural Water Management, Elsevier, vol. 96(12), pages 1773-1784, December.
    6. Cabrera Corral, Francisco Javier & Bonachela Castaño, Santiago & Fernández Fernández, María Dolores & Granados García, María Rosa & López Hernández, Juan Carlos, 2016. "Lysimetry methods for monitoring soil solution electrical conductivity and nutrient concentration in greenhouse tomato crops," Agricultural Water Management, Elsevier, vol. 178(C), pages 171-179.
    7. Daniele Massa & Domenico Prisa & Sara Lazzereschi & Sonia Cacini & Gianluca Burchi, 2018. "Heterogeneous response of two bedding plants to peat substitution by two green composts," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 45(3), pages 164-172.
    8. Fernando Paniagua & Blanca María Plaza & Alfonso Llanderal & Pedro García-Caparrós & María Teresa Lao, 2023. "Sustainable Strategies Based on Reused Leachates and Hydrogen Peroxide Supply to Fertigate Cordyline fruticosa var. ‘Red Edge’ Plants," Agriculture, MDPI, vol. 13(7), pages 1-19, June.
    9. Yang, Zhi & Kong, Tingting & Xie, Jiarui & Yang, Taiguo & Jiang, Yu & Feng, Ziqi & Zhang, Zhi, 2023. "Appropriate water and fertilizer supply can increase yield by promoting growth while ensuring the soil ecological environment in melon production," Agricultural Water Management, Elsevier, vol. 289(C).
    10. Bonachela, Santiago & Fernández, María Dolores & Cabrera-Corral, Francisco Javier & Granados, María Rosa, 2022. "Salt and irrigation management of soil-grown Mediterranean greenhouse tomato crops drip-irrigated with moderately saline water," Agricultural Water Management, Elsevier, vol. 262(C).
    11. Zheng, W.W. & Chun, I.J. & Hong, S.B. & Zang, Y.X., 2013. "Vegetative growth, mineral change, and fruit quality of ‘Fuji’ tree as affected by foliar seawater application," Agricultural Water Management, Elsevier, vol. 126(C), pages 97-103.
    12. Massa, Daniele & Magán, Juan José & Montesano, Francesco Fabiano & Tzortzakis, Nikolaos, 2020. "Minimizing water and nutrient losses from soilless cropping in southern Europe," Agricultural Water Management, Elsevier, vol. 241(C).
    13. Neocleous, Damianos & Savvas, Dimitrios, 2016. "NaCl accumulation and macronutrient uptake by a melon crop in a closed hydroponic system in relation to water uptake," Agricultural Water Management, Elsevier, vol. 165(C), pages 22-32.
    14. Han, Xiaoyu & Kang, Yaohu & Wan, Shuqin & Li, Xiaobin, 2022. "Effect of salinity on oleic sunflower (Helianthus annuus Linn.) under drip irrigation in arid area of Northwest China," Agricultural Water Management, Elsevier, vol. 259(C).
    15. Savvas, Dimitrios & Giannothanasis, Evangelos & Ntanasi, Theodora & Karavidas, Ioannis & Drakatos, Stefanos & Panagiotakis, Ioannis & Neocleous, Damianos & Ntatsi, Georgia, 2023. "Improvement and validation of a decision support system to maintain optimal nutrient levels in crops grown in closed-loop soilless systems," Agricultural Water Management, Elsevier, vol. 285(C).
    16. Incrocci, Luca & Thompson, Rodney B. & Fernandez-Fernandez, María Dolores & De Pascale, Stefania & Pardossi, Alberto & Stanghellini, Cecilia & Rouphael, Youssef & Gallardo, Marisa, 2020. "Irrigation management of European greenhouse vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    17. María Ángeles Botella & Virginia Hernández & Teresa Mestre & Pilar Hellín & Manuel Francisco García-Legaz & Rosa María Rivero & Vicente Martínez & José Fenoll & Pilar Flores, 2021. "Bioactive Compounds of Tomato Fruit in Response to Salinity, Heat and Their Combination," Agriculture, MDPI, vol. 11(6), pages 1-12, June.
    18. Gallego-Elvira, B. & Reca, J. & Martin-Gorriz, B. & Maestre-Valero, J.F. & Martínez-Alvarez, V., 2021. "Irriblend-DSW: A decision support tool for the optimal blending of desalinated and conventional irrigation waters in dry regions," Agricultural Water Management, Elsevier, vol. 255(C).
    19. Rigane, Manel Kammoun & Medhioub, Khaled, 2011. "Assessment of properties of Tunisian agricultural waste composts: Application as components in reconstituted anthropic soils and their effects on tomato yield and quality," Resources, Conservation & Recycling, Elsevier, vol. 55(8), pages 785-792.
    20. Reca, J. & Trillo, C. & Sánchez, J.A. & Martínez, J. & Valera, D., 2018. "Optimization model for on-farm irrigation management of Mediterranean greenhouse crops using desalinated and saline water from different sources," Agricultural Systems, Elsevier, vol. 166(C), pages 173-183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:258:y:2021:i:c:s0378377421004406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.