IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v200y2018icp27-33.html
   My bibliography  Save this article

Calibration of compensation heat pulse velocity technique for measuring transpiration of selected indigenous trees using weighing lysimeters

Author

Listed:
  • Tfwala, C.M.
  • van Rensburg, L.D.
  • Bello, Z.A.
  • Green, S.R.

Abstract

The compensation heat pulse velocity (CHPV) is one of the most widely used methods to measure sap flow in woody plants. However, the accuracy of this method has not been fully explored especially for indigenous tree species of South Africa. The aim of this study was to evaluate the accuracy of the CHPV method in quantifying tree transpiration for selected tree species. Three indigenous trees sampled in a monolith form; black karee (Sersia lancea), buffalo thorn (Ziziphus mucronata) and wild olive (Olea africana) grown on weighing lysimeters (1 m × 1 m × 1.3 m) were installed with CHPV probes to measure sap flow on the stem half hourly, simultaneously with lysimeter measurements of transpiration. The surfaces of the lysimeters were covered with a 10 cm layer of Styrofoam, overlain by a 2 cm layer of gravel to minimize evaporation to a negligible level. Both the lysimeter and CHPV measurements were divided into two sets. The first set was used to develop tree specific calibration equations as well as an equation combining the three species used, here called a combination equation. The second set of data was used for validating the equations. Transpiration rates ranged from negligible at night to daily peaks of 3.5, 1.7 and 1.4 L h−1 for buffalo thorn, black karee and wild olive, respectively. Good agreement indices between CHPV and lysimeters were obtained when using both the tree specific equations and combination equation across species (D = 0.778–1.000, RMSE = 0.001–0.017 L h−1, MAE < 0.001 L h−1 and MBE = −0.0007 to 0.0008 L h−1). It was concluded that the CHPV method can accurately measure tree water use, and therefore can be useful for water resources management in forested areas.

Suggested Citation

  • Tfwala, C.M. & van Rensburg, L.D. & Bello, Z.A. & Green, S.R., 2018. "Calibration of compensation heat pulse velocity technique for measuring transpiration of selected indigenous trees using weighing lysimeters," Agricultural Water Management, Elsevier, vol. 200(C), pages 27-33.
  • Handle: RePEc:eee:agiwat:v:200:y:2018:i:c:p:27-33
    DOI: 10.1016/j.agwat.2018.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418300246
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Poblete-Echeverría, C. & Ortega-Farias, S. & Zuñiga, M. & Fuentes, S., 2012. "Evaluation of compensated heat-pulse velocity method to determine vine transpiration using combined measurements of eddy covariance system and microlysimeters," Agricultural Water Management, Elsevier, vol. 109(C), pages 11-19.
    2. Fernandez, J. E. & Palomo, M. J. & Diaz-Espejo, A. & Clothier, B. E. & Green, S. R. & Giron, I. F. & Moreno, F., 2001. "Heat-pulse measurements of sap flow in olives for automating irrigation: tests, root flow and diagnostics of water stress," Agricultural Water Management, Elsevier, vol. 51(2), pages 99-123, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas, E. & Torrecillas, A. & Ortuno, M.F. & Domingo, R. & Alarcon, J.J., 2005. "Evaluation of transpiration in adult apricot trees from sap flow measurements," Agricultural Water Management, Elsevier, vol. 72(2), pages 131-145, March.
    2. Phogat, V. & Skewes, Mark A. & Mahadevan, M. & Cox, J.W., 2013. "Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 1-11.
    3. González-Altozano, P. & Pavel, E.W. & Oncins, J.A. & Doltra, J. & Cohen, M. & Paço, T. & Massai, R. & Castel, J.R., 2008. "Comparative assessment of five methods of determining sap flow in peach trees," Agricultural Water Management, Elsevier, vol. 95(5), pages 503-515, May.
    4. Zhao, Peng & Kang, Shaozhong & Li, Sien & Ding, Risheng & Tong, Ling & Du, Taisheng, 2018. "Seasonal variations in vineyard ET partitioning and dual crop coefficients correlate with canopy development and surface soil moisture," Agricultural Water Management, Elsevier, vol. 197(C), pages 19-33.
    5. O.E. Mohawesh, 2011. "Evaluation of evapotranspiration models for estimating daily reference evapotranspiration in arid and semiarid environments," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 57(4), pages 145-152.
    6. Er-Raki, S. & Chehbouni, A. & Boulet, G. & Williams, D.G., 2010. "Using the dual approach of FAO-56 for partitioning ET into soil and plant components for olive orchards in a semi-arid region," Agricultural Water Management, Elsevier, vol. 97(11), pages 1769-1778, November.
    7. Pereira, Antonio Roberto & Green, Steve R. & Nova, Nilson Augusto Villa, 2007. "Sap flow, leaf area, net radiation and the Priestley-Taylor formula for irrigated orchards and isolated trees," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 48-52, August.
    8. Han, Weihua & Sun, Jiaxing & Zhang, Kui & Mao, Lili & Gao, Lili & Hou, Xuemin & Cui, Ningbo & Kang, Wenhuai & Gong, Daozhi, 2023. "Optimizing drip fertigation management based on yield, quality, water and fertilizer use efficiency of wine grape in North China," Agricultural Water Management, Elsevier, vol. 280(C).
    9. Ortega-Farias, Samuel & Villalobos-Soublett, Emilio & Riveros-Burgos, Camilo & Zúñiga, Mauricio & Ahumada-Orellana, Luis E., 2020. "Effect of irrigation cut-off strategies on yield, water productivity and gas exchange in a drip-irrigated hazelnut (Corylus avellana L. cv. Tonda di Giffoni) orchard under semiarid conditions," Agricultural Water Management, Elsevier, vol. 238(C).
    10. Chen, Han & Huang, Jinhui Jeanne & McBean, Edward, 2020. "Partitioning of daily evapotranspiration using a modified shuttleworth-wallace model, random Forest and support vector regression, for a cabbage farmland," Agricultural Water Management, Elsevier, vol. 228(C).
    11. Kaneko, Teruko & Gould, Nick & Campbell, David & Snelgar, Patrick & Clearwater, Michael J., 2022. "The effect of soil type, fruit load and shaded area on ‘Hass’ avocado (Persea americana Mill.) water use and crop coefficients," Agricultural Water Management, Elsevier, vol. 264(C).
    12. Rodriguez-Dominguez, C.M. & Ehrenberger, W. & Sann, C. & Rüger, S. & Sukhorukov, V. & Martín-Palomo, M.J. & Diaz-Espejo, A. & Cuevas, M.V. & Torres-Ruiz, J.M. & Perez-Martin, A. & Zimmermann, U. & Fer, 2012. "Concomitant measurements of stem sap flow and leaf turgor pressure in olive trees using the leaf patch clamp pressure probe," Agricultural Water Management, Elsevier, vol. 114(C), pages 50-58.
    13. Romero, R. & Muriel, J.L. & García, I. & Muñoz de la Peña, D., 2012. "Research on automatic irrigation control: State of the art and recent results," Agricultural Water Management, Elsevier, vol. 114(C), pages 59-66.
    14. Fernández, J.E., 2014. "Plant-based sensing to monitor water stress: Applicability to commercial orchards," Agricultural Water Management, Elsevier, vol. 142(C), pages 99-109.
    15. Ayyoub, A. & Er-Raki, S. & Khabba, S. & Merlin, O. & Ezzahar, J. & Rodriguez, J.C. & Bahlaoui, A. & Chehbouni, A., 2017. "A simple and alternative approach based on reference evapotranspiration and leaf area index for estimating tree transpiration in semi-arid regions," Agricultural Water Management, Elsevier, vol. 188(C), pages 61-68.
    16. Pérez-López, D. & Gijón, M.C. & Moriana, A., 2008. "Influence of irrigation rate on the rehydration of olive tree plantlets," Agricultural Water Management, Elsevier, vol. 95(10), pages 1161-1166, October.
    17. Greven, Marc & Neal, Sue & Green, Steve & Dichio, Bartolomeo & Clothier, Brent, 2009. "The effects of drought on the water use, fruit development and oil yield from young olive trees," Agricultural Water Management, Elsevier, vol. 96(11), pages 1525-1531, November.
    18. Siakou, M. & Bruggeman, A. & Eliades, M. & Zoumides, C. & Djuma, H. & Kyriacou, M.C. & Emmanouilidou, M.G. & Spyros, A. & Manolopoulou, E. & Moriana, A., 2021. "Effects of deficit irrigation on ‘Koroneiki’ olive tree growth, physiology and olive oil quality at different harvest dates," Agricultural Water Management, Elsevier, vol. 258(C).
    19. Martínez-Cob, A. & Faci, J.M., 2010. "Evapotranspiration of an hedge-pruned olive orchard in a semiarid area of NE Spain," Agricultural Water Management, Elsevier, vol. 97(3), pages 410-418, March.
    20. Rousseaux, M. Cecilia & Figuerola, Patricia I. & Correa-Tedesco, Guillermo & Searles, Peter S., 2009. "Seasonal variations in sap flow and soil evaporation in an olive (Olea europaea L.) grove under two irrigation regimes in an arid region of Argentina," Agricultural Water Management, Elsevier, vol. 96(6), pages 1037-1044, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:200:y:2018:i:c:p:27-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.