IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v192y2017icp189-197.html
   My bibliography  Save this article

Effect of deficit irrigation on flowering and fruit properties of pomegranate (Punica granatum cv. Shahvar)

Author

Listed:
  • Selahvarzi, Yahya
  • Zamani, Zabihollah
  • Fatahi, Reza
  • Talaei, Ali-Reza

Abstract

Pomegranate is one of the oldest and most valuable fruits and its consumption has been risen recently. Limited water resources in subtropical regions as well as long flowering period of pomegranate trees during the season are two major problems impede the fruit production management. In the present study, the effects of regulated deficit irrigation (RDI: no watering until fruit set stage, while and then watering was applied similar to control) and sustained deficit irrigation (SDI: 50% ETC throughout the growing season) on flowering and fruit characteristics of pomegranate were compared to the control trees (100% ETC throughout the growing season) during two consecutive years (2014/2015). The characteristics of flowers and fruits were studied at three different positions (solitary flowers, as well as terminal and lateral flowers in the cluster). Results showed that RDI trees were under mild water stress early in the growing season (midday stem water potential: −1.4MPa, 2014 and −1.8MPa, 2015) and they recovered immediately after the start of irrigation. However, SDI treatment caused severe (midday stem water potential: −2.1MPa, 2014 and −2.8MPa, 2015) water stress in plants. The RDI treatment reduced early season vegetative growth, postponed the first flowering wave on the one hand and accelerated next blooming wave on the other hand. Thus, the flowering period of RDI trees was shortened in both seasons. In all irrigation treatments under study, the number of lateral flowers was higher than solitary and terminal positions, but its hermaphrodite/male (H/M) sex ratio was lower. The solitary and terminal positions of RDI trees showed the highest value of flower (ovary) width, fruit set, average fruit weight and juice, especially in the second year of experiment. SDI fruits had higher values of total phenolic compounds (TPC) and greater antioxidant activity (AA), while the fruits of control and RDI exhibited the lowest TPC and AA. In the second year, values of fruit number, yield and water productivity (WP) was improved in the control (17.2%, 8.1% and 13.9% respectively) and RDI (15.5%, 19.1% and 5.9% respectively) trees compared with 2014year, but not in SDI treatment. The yield per tree dropped by 36.2% (2014) and 52.1% (2015) in SDI treatment compared to the control trees. In the first year of experiment, WP in deficit irrigation treatments was more than the control trees (58.6% in SDI and 49.7% in RDI), though this value in SDI dropped severely in the second year (22.2%). The results suggest that using RDI strategy has positive effects on pomegranate flowering and fruits, whereas, SDI treatment adversely affect pomegranate production in arid and semi-arid areas.

Suggested Citation

  • Selahvarzi, Yahya & Zamani, Zabihollah & Fatahi, Reza & Talaei, Ali-Reza, 2017. "Effect of deficit irrigation on flowering and fruit properties of pomegranate (Punica granatum cv. Shahvar)," Agricultural Water Management, Elsevier, vol. 192(C), pages 189-197.
  • Handle: RePEc:eee:agiwat:v:192:y:2017:i:c:p:189-197
    DOI: 10.1016/j.agwat.2017.07.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417302305
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.07.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mellisho, C.D. & Egea, I. & Galindo, A. & Rodríguez, P. & Rodríguez, J. & Conejero, W. & Romojaro, F. & Torrecillas, A., 2012. "Pomegranate (Punica granatum L.) fruit response to different deficit irrigation conditions," Agricultural Water Management, Elsevier, vol. 114(C), pages 30-36.
    2. Cuevas, Julian & Canete, Maria L. & Pinillos, Virginia & Zapata, Antonio J. & Fernandez, Maria D. & Gonzalez, Monica & Hueso, Juan J., 2007. "Optimal dates for regulated deficit irrigation in `Algerie' loquat (Eriobotrya japonica Lindl.) cultivated in Southeast Spain," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 131-136, April.
    3. Girona, J. & Gelly, M. & Mata, M. & Arbones, A. & Rufat, J. & Marsal, J., 2005. "Peach tree response to single and combined deficit irrigation regimes in deep soils," Agricultural Water Management, Elsevier, vol. 72(2), pages 97-108, March.
    4. Intrigliolo, D.S. & Nicolas, E. & Bonet, L. & Ferrer, P. & Alarcón, J.J. & Bartual, J., 2011. "Water relations of field grown Pomegranate trees (Punica granatum) under different drip irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(4), pages 691-696, February.
    5. Laribi, A.I. & Palou, L. & Intrigliolo, D.S. & Nortes, P.A. & Rojas-Argudo, C. & Taberner, V. & Bartual, J. & Pérez-Gago, M.B., 2013. "Effect of sustained and regulated deficit irrigation on fruit quality of pomegranate cv. ‘Mollar de Elche’ at harvest and during cold storage," Agricultural Water Management, Elsevier, vol. 125(C), pages 61-70.
    6. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2014. "Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 146(C), pages 45-56.
    7. García-Tejero, I. & Romero-Vicente, R. & Jiménez-Bocanegra, J.A. & Martínez-García, G. & Durán-Zuazo, V.H. & Muriel-Fernández, J.L., 2010. "Response of citrus trees to deficit irrigation during different phenological periods in relation to yield, fruit quality, and water productivity," Agricultural Water Management, Elsevier, vol. 97(5), pages 689-699, May.
    8. Samperio, Alberto & Prieto, María Henar & Blanco-Cipollone, Fernando & Vivas, Antonio & Moñino, María José, 2015. "Effects of post-harvest deficit irrigation in ‘Red Beaut’ Japanese plum: Tree water status, vegetative growth, fruit yield, quality and economic return," Agricultural Water Management, Elsevier, vol. 150(C), pages 92-102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Volschenk, Theresa, 2021. "Effect of water deficits on pomegranate tree performance and fruit quality – A review," Agricultural Water Management, Elsevier, vol. 246(C).
    2. Alikhani-Koupaei, Majid & Fatahi, Reza & Zamani, Zabihollah & Salimi, Saeedeh, 2018. "Effects of deficit irrigation on some physiological traits, production and fruit quality of ‘Mazafati’ date palm and the fruit wilting and dropping disorder," Agricultural Water Management, Elsevier, vol. 209(C), pages 219-227.
    3. Chen, Fei & Cui, Ningbo & Jiang, Shouzheng & Li, Hongping & Wang, Yaosheng & Gong, Daozhi & Hu, Xiaotao & Zhao, Lu & Liu, Chunwei & Qiu, Rangjian, 2022. "Effects of water deficit at different growth stages under drip irrigation on fruit quality of citrus in the humid areas of South China," Agricultural Water Management, Elsevier, vol. 262(C).
    4. Fialho, Letícia & Ramôa, Sofia & Parenzan, Silvia & Guerreiro, Isabel & Catronga, Hilário & Soldado, David & Guerreiro, Olinda & García, Valme Gonzalez & e Silva, Pedro Oliveira & Jerónimo, Eliana, 2021. "Effect of regulated deficit irrigation on pomegranate fruit quality at harvest and during cold storage," Agricultural Water Management, Elsevier, vol. 251(C).
    5. Volschenk, Theresa, 2020. "Water use and irrigation management of pomegranate trees - A review," Agricultural Water Management, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galindo, A. & Collado-González, J. & Griñán, I. & Corell, M. & Centeno, A. & Martín-Palomo, M.J. & Girón, I.F. & Rodríguez, P. & Cruz, Z.N. & Memmi, H. & Carbonell-Barrachina, A.A. & Hernández, F. & T, 2018. "Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems," Agricultural Water Management, Elsevier, vol. 202(C), pages 311-324.
    2. Volschenk, Theresa, 2021. "Effect of water deficits on pomegranate tree performance and fruit quality – A review," Agricultural Water Management, Elsevier, vol. 246(C).
    3. Volschenk, Theresa, 2020. "Water use and irrigation management of pomegranate trees - A review," Agricultural Water Management, Elsevier, vol. 241(C).
    4. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2016. "Physiological and growth responses of pomegranate tree (Punica granatum (L.) cv. Rabab) under partial root zone drying and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 163(C), pages 146-158.
    5. Parvizi, Hossein & Sepaskhah, Ali Reza, 2015. "Effect of drip irrigation and fertilizer regimes on fruit quality of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 156(C), pages 70-78.
    6. Alikhani-Koupaei, Majid & Soleimani Aghdam, Morteza & Faghih, Somayeh, 2020. "Physiological aspects of date palm loading and alternate bearing under regulated deficit irrigation compared to cutting back of bunch," Agricultural Water Management, Elsevier, vol. 232(C).
    7. Conesa, María R. & Conejero, Wenceslao & Vera, Juan & Agulló, Vicente & García-Viguera, Cristina & Ruiz-Sánchez, M. Carmen, 2021. "Irrigation management practices in nectarine fruit quality at harvest and after cold storage," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Zahedi, Seyed Morteza & Hosseini, Marjan Sadat & Daneshvar Hakimi Meybodi, Naghmeh & Abadía, Javier & Germ, Mateja & Gholami, Rahmatollah & Abdelrahman, Mostafa, 2022. "Evaluation of drought tolerance in three commercial pomegranate cultivars using photosynthetic pigments, yield parameters and biochemical traits as biomarkers," Agricultural Water Management, Elsevier, vol. 261(C).
    9. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    10. Laribi, A.I. & Palou, L. & Intrigliolo, D.S. & Nortes, P.A. & Rojas-Argudo, C. & Taberner, V. & Bartual, J. & Pérez-Gago, M.B., 2013. "Effect of sustained and regulated deficit irrigation on fruit quality of pomegranate cv. ‘Mollar de Elche’ at harvest and during cold storage," Agricultural Water Management, Elsevier, vol. 125(C), pages 61-70.
    11. Samperio, Alberto & Moñino, María José & Vivas, Antonio & Blanco-Cipollone, Fernando & Martín, Abelardo García & Prieto, María Henar, 2015. "Effect of deficit irrigation during stage II and post-harvest on tree water status, vegetative growth, yield and economic assessment in ‘Angeleno’ Japanese plum," Agricultural Water Management, Elsevier, vol. 158(C), pages 69-81.
    12. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    13. Martínez-Nicolás, J.J. & Galindo, A. & Griñán, I. & Rodríguez, P. & Cruz, Z.N. & Martínez-Font, R. & Carbonell-Barrachina, A.A. & Nouri, H. & Melgarejo, P., 2019. "Irrigation water saving during pomegranate flowering and fruit set period do not affect Wonderful and Mollar de Elche cultivars yield and fruit composition," Agricultural Water Management, Elsevier, vol. 226(C).
    14. Fialho, Letícia & Ramôa, Sofia & Parenzan, Silvia & Guerreiro, Isabel & Catronga, Hilário & Soldado, David & Guerreiro, Olinda & García, Valme Gonzalez & e Silva, Pedro Oliveira & Jerónimo, Eliana, 2021. "Effect of regulated deficit irrigation on pomegranate fruit quality at harvest and during cold storage," Agricultural Water Management, Elsevier, vol. 251(C).
    15. Tong, Xuanyue & Wu, Pute & Liu, Xufei & Zhang, Lin & Zhou, Wei & Wang, Zhaoguo, 2022. "A global meta-analysis of fruit tree yield and water use efficiency under deficit irrigation," Agricultural Water Management, Elsevier, vol. 260(C).
    16. Moñino, María José & Blanco-Cipollone, Fernando & Vivas, Antonio & Bodelón, Oscar G. & Prieto, María Henar, 2020. "Evaluation of different deficit irrigation strategies in the late-maturing Japanese plum cultivar 'Angeleno'," Agricultural Water Management, Elsevier, vol. 234(C).
    17. Mellisho, C.D. & Egea, I. & Galindo, A. & Rodríguez, P. & Rodríguez, J. & Conejero, W. & Romojaro, F. & Torrecillas, A., 2012. "Pomegranate (Punica granatum L.) fruit response to different deficit irrigation conditions," Agricultural Water Management, Elsevier, vol. 114(C), pages 30-36.
    18. Trigo-Córdoba, Emiliano & Bouzas-Cid, Yolanda & Orriols-Fernández, Ignacio & Mirás-Avalos, José Manuel, 2015. "Effects of deficit irrigation on the performance of grapevine (Vitis vinifera L.) cv. ‘Godello’ and ‘Treixadura’ in Ribeiro, NW Spain," Agricultural Water Management, Elsevier, vol. 161(C), pages 20-30.
    19. Tu, Anguo & Xie, Songhua & Mo, Minghao & Song, Yuejun & Li, Ying, 2021. "Water budget components estimation for a mature citrus orchard of southern China based on HYDRUS-1D model," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:192:y:2017:i:c:p:189-197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.