IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v209y2018icp219-227.html
   My bibliography  Save this article

Effects of deficit irrigation on some physiological traits, production and fruit quality of ‘Mazafati’ date palm and the fruit wilting and dropping disorder

Author

Listed:
  • Alikhani-Koupaei, Majid
  • Fatahi, Reza
  • Zamani, Zabihollah
  • Salimi, Saeedeh

Abstract

Date palm (Phoenix dactylifera L.) fruit wilting disorder, caused by the high increase in temperature and decrease in relative humidity of the environment, is more prevailing due to climate change over the last decades. This has affected negatively the economy of single-product palm growers. The physiological effects of deficit irrigation on ‘Mazafati’ date palm during four months, starting from two months before flowering (early January) up to two months after flowering which is concomitant with the middle of the Kimri stage (late April) was investigated. Two irrigation levels of 100% ETc and 70% ETc at three irrigation intervals of 50, 100 and 150 mm cumulative evaporation in two locations with different average daily and annual temperatures in Sistan and Baluchestan province of Iran were compared. Deficit irrigation at intervals of 100 mm evaporation resulted to the highest bunch weight and yield in two orchards and, the highest water use efficiency was obtained in the location 2 (warmer area). Wilting percentage of bunch was not affected by irrigation levels, but the irrigation interval at 100 mm evaporation showed the best control. The increase in mean weight of fruit was observed only in the location 1 with irrigation intervals of 50 and 100 mm evaporation. The highest amount of soluble solids and soluble sugars was obtained in the second location with irrigation interval at 150 mm evaporation. Total phenolic compounds and fruit starch showed the lowest and highest with full irrigation, respectively. Deficit irrigation at all three irrigation intervals increased the activity of peroxidase and polyphenol oxidase in fruits and leaves. Reduction of calcium and iron of leaf during the disorder was observed with deficit irrigation at different irrigation intervals. However, reduction in leaf zinc was observed only at 150 mm irrigation interval. According to the results, irrigation level of 70% with 100% did not show a significant difference in fruit qualitative properties, and irrigation at 100 mm evaporation intervals before the disorder risk period is recommended to control the disorder. It seems to be a more increasing in percentage or duration of deficit irrigation on date palm in future researches to be promising.

Suggested Citation

  • Alikhani-Koupaei, Majid & Fatahi, Reza & Zamani, Zabihollah & Salimi, Saeedeh, 2018. "Effects of deficit irrigation on some physiological traits, production and fruit quality of ‘Mazafati’ date palm and the fruit wilting and dropping disorder," Agricultural Water Management, Elsevier, vol. 209(C), pages 219-227.
  • Handle: RePEc:eee:agiwat:v:209:y:2018:i:c:p:219-227
    DOI: 10.1016/j.agwat.2018.07.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418310679
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.07.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Intrigliolo, D.S. & Castel, J.R., 2006. "Performance of various water stress indicators for prediction of fruit size response to deficit irrigation in plum," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 173-180, May.
    2. García-Tejero, I. & Romero-Vicente, R. & Jiménez-Bocanegra, J.A. & Martínez-García, G. & Durán-Zuazo, V.H. & Muriel-Fernández, J.L., 2010. "Response of citrus trees to deficit irrigation during different phenological periods in relation to yield, fruit quality, and water productivity," Agricultural Water Management, Elsevier, vol. 97(5), pages 689-699, May.
    3. Selahvarzi, Yahya & Zamani, Zabihollah & Fatahi, Reza & Talaei, Ali-Reza, 2017. "Effect of deficit irrigation on flowering and fruit properties of pomegranate (Punica granatum cv. Shahvar)," Agricultural Water Management, Elsevier, vol. 192(C), pages 189-197.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdel-Sattar, Mahmoud & Al-Obeed, Rashid S. & Makhasha, Essa & Mostafa, Laila Y. & Abdelzaher, Rania A.E. & Rihan, Hail Z., 2024. "Improving mangoes' productivity and crop water productivity by 24-epibrassinosteroids and hydrogen peroxide under deficit irrigation," Agricultural Water Management, Elsevier, vol. 298(C).
    2. Jeet Chand & Guna Hewa & Ali Hassanli & Baden Myers, 2020. "Evaluation of Deficit Irrigation and Water Quality on Production and Water Productivity of Tomato in Greenhouse," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    3. Mishari A. Alnaim & Magdy S. Mohamed & Maged Mohammed & Muhammad Munir, 2022. "Effects of Automated Irrigation Systems and Water Regimes on Soil Properties, Water Productivity, Yield and Fruit Quality of Date Palm," Agriculture, MDPI, vol. 12(3), pages 1-21, February.
    4. Cui, Ningbo & Wang, Mingjun & Zou, Qingyao & Wang, Zhihui & Jiang, Shouzheng & Chen, Xi & Zha, Yuxuan & Xiang, Lu & Zhao, Lu, 2023. "Water-potassium coupling at different growth stages improved kiwifruit (Actinidia spp.) quality and water/potassium productivity without yield loss in the humid areas of South China," Agricultural Water Management, Elsevier, vol. 289(C).
    5. Lipan, Leontina & Martín-Palomo, María J. & Sánchez-Rodríguez, Lucía & Cano-Lamadrid, Marina & Sendra, Esther & Hernández, Francisca & Burló, Francisco & Vázquez-Araújo, Laura & Andreu, Luis & Carbone, 2019. "Almond fruit quality can be improved by means of deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 217(C), pages 236-242.
    6. Fatima-Zahra Akensous & Mohamed Anli & Abdelilah Meddich, 2022. "Biostimulants as Innovative Tools to Boost Date Palm ( Phoenix dactylifera L.) Performance under Drought, Salinity, and Heavy Metal(Oid)s’ Stresses: A Concise Review," Sustainability, MDPI, vol. 14(23), pages 1-30, November.
    7. Agami, Ramadan A. & Alamri, Saad A.M. & Abd El-Mageed, T.A. & Abousekken, M.S.M. & Hashem, Mohamed, 2018. "Role of exogenous nitrogen supply in alleviating the deficit irrigation stress in wheat plants," Agricultural Water Management, Elsevier, vol. 210(C), pages 261-270.
    8. Leontina Lipan & Aarón A. Carbonell-Pedro & Belén Cárceles Rodríguez & Víctor Hugo Durán-Zuazo & Dionisio Franco Tarifa & Iván Francisco García-Tejero & Baltasar Gálvez Ruiz & Simón Cuadros Tavira & R, 2021. "Can Sustained Deficit Irrigation Save Water and Meet the Quality Characteristics of Mango?," Agriculture, MDPI, vol. 11(5), pages 1-16, May.
    9. Liao, Yang & Cao, Hong-Xia & Xue, Wen-Kai & Liu, Xing, 2021. "Effects of the combination of mulching and deficit irrigation on the soil water and heat, growth and productivity of apples," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Alikhani-Koupaei, Majid & Soleimani Aghdam, Morteza & Faghih, Somayeh, 2020. "Physiological aspects of date palm loading and alternate bearing under regulated deficit irrigation compared to cutting back of bunch," Agricultural Water Management, Elsevier, vol. 232(C).
    11. Zhong, Yun & Fei, Liangjun & Li, Yibo & Zeng, Jian & Dai, Zhiguang, 2019. "Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 222(C), pages 221-230.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alikhani-Koupaei, Majid & Soleimani Aghdam, Morteza & Faghih, Somayeh, 2020. "Physiological aspects of date palm loading and alternate bearing under regulated deficit irrigation compared to cutting back of bunch," Agricultural Water Management, Elsevier, vol. 232(C).
    2. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    3. Guizani, Monia & Dabbou, Samia & Maatallah, Samira & Montevecchi, Giuseppe & Hajlaoui, Hichem & Rezig, Mourad & Helal, Ahmed Noureddine & Kilani-Jaziri, Soumaya, 2019. "Physiological responses and fruit quality of four peach cultivars under sustained and cyclic deficit irrigation in center-west of Tunisia," Agricultural Water Management, Elsevier, vol. 217(C), pages 81-97.
    4. Ballester, C. & Castel, J. & Intrigliolo, D.S. & Castel, J.R., 2011. "Response of Clementina de Nules citrus trees to summer deficit irrigation. Yield components and fruit composition," Agricultural Water Management, Elsevier, vol. 98(6), pages 1027-1032, April.
    5. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).
    6. Martín-Palomo, MJ & Andreu, L. & Pérez-López, D. & Centeno, A. & Galindo, A. & Moriana, A. & Corell, M., 2022. "Trunk growth rate frequencies as water stress indicator in almond trees," Agricultural Water Management, Elsevier, vol. 271(C).
    7. Gasque, María & Martí, Pau & Granero, Beatriz & González-Altozano, Pablo, 2016. "Effects of long-term summer deficit irrigation on ‘Navelina’ citrus trees," Agricultural Water Management, Elsevier, vol. 169(C), pages 140-147.
    8. Pérez-Pérez, J.G. & Robles, J.M. & García-Sánchez, F. & Botía, P., 2016. "Comparison of deficit and saline irrigation strategies to confront water restriction in lemon trees grown in semi-arid regions," Agricultural Water Management, Elsevier, vol. 164(P1), pages 46-57.
    9. Panigrahi, P. & Sharma, R.K. & Hasan, M. & Parihar, S.S., 2014. "Deficit irrigation scheduling and yield prediction of ‘Kinnow’ mandarin (Citrus reticulate Blanco) in a semiarid region," Agricultural Water Management, Elsevier, vol. 140(C), pages 48-60.
    10. Javier Vélez-Sánchez & Fánor Casierra-Posada & Gerhard Fischer, 2023. "Effect of Regulated Deficit Irrigation (RDI) on the Growth and Development of Pear Fruit ( Pyrus communis L.), var. Triunfo de Viena," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    11. Volschenk, Theresa, 2020. "Water use and irrigation management of pomegranate trees - A review," Agricultural Water Management, Elsevier, vol. 241(C).
    12. Robles, J.M. & Botía, P. & Pérez-Pérez, J.G, 2016. "Subsurface drip irrigation affects trunk diameter fluctuations in lemon trees, in comparison with surface drip irrigation," Agricultural Water Management, Elsevier, vol. 165(C), pages 11-21.
    13. Chen, Fei & Cui, Ningbo & Jiang, Shouzheng & Li, Hongping & Wang, Yaosheng & Gong, Daozhi & Hu, Xiaotao & Zhao, Lu & Liu, Chunwei & Qiu, Rangjian, 2022. "Effects of water deficit at different growth stages under drip irrigation on fruit quality of citrus in the humid areas of South China," Agricultural Water Management, Elsevier, vol. 262(C).
    14. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    15. Gutiérrez-Gordillo, S. & Durán-Zuazo, V.H. & García-Tejero, I., 2019. "Response of three almond cultivars subjected to different irrigation regimes in Guadalquivir river basin," Agricultural Water Management, Elsevier, vol. 222(C), pages 72-81.
    16. Assouline, Shmuel & Hochberg, Uri & Silber, Avner, 2021. "The impact of tree phenology on the response of irrigated avocado: The hysteretic nature of the maximum trunk daily shrinkage," Agricultural Water Management, Elsevier, vol. 256(C).
    17. Mounzer, Oussama & Pedrero-Salcedo, Francisco & Nortes, Pedro A. & Bayona, José-Maria & Nicolás-Nicolás, Emilio & Alarcón, Juan José, 2013. "Transient soil salinity under the combined effect of reclaimed water and regulated deficit drip irrigation of Mandarin trees," Agricultural Water Management, Elsevier, vol. 120(C), pages 23-29.
    18. Fernández, J.E., 2014. "Plant-based sensing to monitor water stress: Applicability to commercial orchards," Agricultural Water Management, Elsevier, vol. 142(C), pages 99-109.
    19. Clara Gabaldón-Leal & Álvaro Sánchez-Virosta & Carolina Doña & José González-Piqueras & Juan Manuel Sánchez & Ramón López-Urrea, 2024. "Ground Measurements and Remote Sensing Modeling of Gross Primary Productivity and Water Use Efficiency in Almond Agroecosystems," Agriculture, MDPI, vol. 14(9), pages 1-22, September.
    20. Badal, E. & Buesa, I. & Guerra, D. & Bonet, L. & Ferrer, P. & Intrigliolo, D.S., 2010. "Maximum diurnal trunk shrinkage is a sensitive indicator of plant water, stress in Diospyros kaki (Persimmon) trees," Agricultural Water Management, Elsevier, vol. 98(1), pages 143-147, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:209:y:2018:i:c:p:219-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.