IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v156y2015icp70-78.html
   My bibliography  Save this article

Effect of drip irrigation and fertilizer regimes on fruit quality of a pomegranate (Punica granatum (L.) cv. Rabab) orchard

Author

Listed:
  • Parvizi, Hossein
  • Sepaskhah, Ali Reza

Abstract

We investigated the effect of different drip irrigation strategies including irrigating one side of trees with 50% and 75% of ETC (DI50, DI75); irrigating alternate sides of trees with 50% and 75% of ETC (PRD50, PRD75), and full irrigation (FI) that received 100% ETC and three prevalent fertilizers type including manure (M), chemical (CF) and foliar (FF) fertilizers on quality of pomegranate fruit in a semi-arid area. Results showed that the values of measured attributes varied from 64.4 to 71.2% in aril, 28.8 to 35.6% in peel, 49.0 to 55.7% in juice percentage, 1.055–1.064gcm−3 in juice density, 12.4 to 15.7 in maturity index (MI), 1.14 to 1.53% citric acid in titratable acidity (TA), 17.5 to 19.2°Brix in total soluble solids (TSS), 10.8 to 12.3mg per 100mL of juice in vitamin C and 3.12 to 3.26 in pH. On average, PRD strategies increased the juice percentage, MI and decreased the TA in comparison with FI while the results of DI strategies were in contrast to PRD. Furthermore, higher level of water stress (PRD50 and DI50) increased the TSS and decreased the vitamin C in comparison with other irrigation strategies. CF fertilizer showed the lower values in MI, TSS, peel percentage and juice density and the higher values in aril percentage, TA and vitamin C in comparison with other fertilizer types. Among the irrigation strategies, PRD50, PRD75 and DI75 strategies is recommend due to the positive impact on fruit quality attributes; however, it is important to consider the negative effect of PRD50 on fruit yields. For fertilizer types, the fertilizers including microelements (M and FF) are preferred in comparison with CF (including NPK). Based on the results, correct harvest maturity and ripening for pomegranate fruit can be determined when TA is reached lower than 1.32% citric acid, MI is increased to higher than 13.95 and TSS is greater than 18.25°Brix.

Suggested Citation

  • Parvizi, Hossein & Sepaskhah, Ali Reza, 2015. "Effect of drip irrigation and fertilizer regimes on fruit quality of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 156(C), pages 70-78.
  • Handle: RePEc:eee:agiwat:v:156:y:2015:i:c:p:70-78
    DOI: 10.1016/j.agwat.2015.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415001092
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mellisho, C.D. & Egea, I. & Galindo, A. & Rodríguez, P. & Rodríguez, J. & Conejero, W. & Romojaro, F. & Torrecillas, A., 2012. "Pomegranate (Punica granatum L.) fruit response to different deficit irrigation conditions," Agricultural Water Management, Elsevier, vol. 114(C), pages 30-36.
    2. Laribi, A.I. & Palou, L. & Intrigliolo, D.S. & Nortes, P.A. & Rojas-Argudo, C. & Taberner, V. & Bartual, J. & Pérez-Gago, M.B., 2013. "Effect of sustained and regulated deficit irrigation on fruit quality of pomegranate cv. ‘Mollar de Elche’ at harvest and during cold storage," Agricultural Water Management, Elsevier, vol. 125(C), pages 61-70.
    3. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2014. "Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 146(C), pages 45-56.
    4. Spreer, W. & Nagle, M. & Neidhart, S. & Carle, R. & Ongprasert, S. & Muller, J., 2007. "Effect of regulated deficit irrigation and partial rootzone drying on the quality of mango fruits (Mangifera indica L., cv. `Chok Anan')," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 173-180, March.
    5. Du, Taisheng & Kang, Shaozhong & Zhang, Jianhua & Li, Fusheng & Yan, Boyuan, 2008. "Water use efficiency and fruit quality of table grape under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 95(6), pages 659-668, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingwei Wang & Yuan Li & Wenquan Niu, 2020. "Deficit Alternate Drip Irrigation Increased Root-Soil-Plant Interaction, Tomato Yield, and Quality," IJERPH, MDPI, vol. 17(3), pages 1-18, January.
    2. Sun, Guangzhao & Hu, Tiantian & Liu, Xiaogang & Peng, Youliang & Leng, Xianxian & Li, Yilin & Yang, Qiliang, 2022. "Optimizing irrigation and fertilization at various growth stages to improve mango yield, fruit quality and water-fertilizer use efficiency in xerothermic regions," Agricultural Water Management, Elsevier, vol. 260(C).
    3. Volschenk, Theresa, 2021. "Effect of water deficits on pomegranate tree performance and fruit quality – A review," Agricultural Water Management, Elsevier, vol. 246(C).
    4. Galindo, A. & Collado-González, J. & Griñán, I. & Corell, M. & Centeno, A. & Martín-Palomo, M.J. & Girón, I.F. & Rodríguez, P. & Cruz, Z.N. & Memmi, H. & Carbonell-Barrachina, A.A. & Hernández, F. & T, 2018. "Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems," Agricultural Water Management, Elsevier, vol. 202(C), pages 311-324.
    5. Fialho, Letícia & Ramôa, Sofia & Parenzan, Silvia & Guerreiro, Isabel & Catronga, Hilário & Soldado, David & Guerreiro, Olinda & García, Valme Gonzalez & e Silva, Pedro Oliveira & Jerónimo, Eliana, 2021. "Effect of regulated deficit irrigation on pomegranate fruit quality at harvest and during cold storage," Agricultural Water Management, Elsevier, vol. 251(C).
    6. Volschenk, Theresa, 2020. "Water use and irrigation management of pomegranate trees - A review," Agricultural Water Management, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    2. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2014. "Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 146(C), pages 45-56.
    3. Galindo, A. & Collado-González, J. & Griñán, I. & Corell, M. & Centeno, A. & Martín-Palomo, M.J. & Girón, I.F. & Rodríguez, P. & Cruz, Z.N. & Memmi, H. & Carbonell-Barrachina, A.A. & Hernández, F. & T, 2018. "Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems," Agricultural Water Management, Elsevier, vol. 202(C), pages 311-324.
    4. Selahvarzi, Yahya & Zamani, Zabihollah & Fatahi, Reza & Talaei, Ali-Reza, 2017. "Effect of deficit irrigation on flowering and fruit properties of pomegranate (Punica granatum cv. Shahvar)," Agricultural Water Management, Elsevier, vol. 192(C), pages 189-197.
    5. Volschenk, Theresa, 2021. "Effect of water deficits on pomegranate tree performance and fruit quality – A review," Agricultural Water Management, Elsevier, vol. 246(C).
    6. Zahedi, Seyed Morteza & Hosseini, Marjan Sadat & Daneshvar Hakimi Meybodi, Naghmeh & Abadía, Javier & Germ, Mateja & Gholami, Rahmatollah & Abdelrahman, Mostafa, 2022. "Evaluation of drought tolerance in three commercial pomegranate cultivars using photosynthetic pigments, yield parameters and biochemical traits as biomarkers," Agricultural Water Management, Elsevier, vol. 261(C).
    7. Jingwei Wang & Yuan Li & Wenquan Niu, 2020. "Deficit Alternate Drip Irrigation Increased Root-Soil-Plant Interaction, Tomato Yield, and Quality," IJERPH, MDPI, vol. 17(3), pages 1-18, January.
    8. Abdulrahman Alhashimi & Arwa Abdulkreem AL-Huqail & Mustafa H. Hashem & Basem M. M. Bakr & Waleed M. E. Fekry & Hosny F. Abdel-Aziz & Ashraf E. Hamdy & Ramadan Eid Abdelraouf & Maher Fathy, 2023. "Using Deficit Irrigation Strategies and Organic Mulches for Improving Yield and Water Productivity of Mango under Dry Environment Conditions," Agriculture, MDPI, vol. 13(7), pages 1-21, July.
    9. Volschenk, Theresa, 2020. "Water use and irrigation management of pomegranate trees - A review," Agricultural Water Management, Elsevier, vol. 241(C).
    10. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2016. "Physiological and growth responses of pomegranate tree (Punica granatum (L.) cv. Rabab) under partial root zone drying and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 163(C), pages 146-158.
    11. Martínez-Nicolás, J.J. & Galindo, A. & Griñán, I. & Rodríguez, P. & Cruz, Z.N. & Martínez-Font, R. & Carbonell-Barrachina, A.A. & Nouri, H. & Melgarejo, P., 2019. "Irrigation water saving during pomegranate flowering and fruit set period do not affect Wonderful and Mollar de Elche cultivars yield and fruit composition," Agricultural Water Management, Elsevier, vol. 226(C).
    12. Fialho, Letícia & Ramôa, Sofia & Parenzan, Silvia & Guerreiro, Isabel & Catronga, Hilário & Soldado, David & Guerreiro, Olinda & García, Valme Gonzalez & e Silva, Pedro Oliveira & Jerónimo, Eliana, 2021. "Effect of regulated deficit irrigation on pomegranate fruit quality at harvest and during cold storage," Agricultural Water Management, Elsevier, vol. 251(C).
    13. Conesa, María R. & Conejero, Wenceslao & Vera, Juan & Agulló, Vicente & García-Viguera, Cristina & Ruiz-Sánchez, M. Carmen, 2021. "Irrigation management practices in nectarine fruit quality at harvest and after cold storage," Agricultural Water Management, Elsevier, vol. 243(C).
    14. Yang, Xin & Bornø, Marie Louise & Wei, Zhenhua & Liu, Fulai, 2021. "Combined effect of partial root drying and elevated atmospheric CO2 on the physiology and fruit quality of two genotypes of tomato plants with contrasting endogenous ABA levels," Agricultural Water Management, Elsevier, vol. 254(C).
    15. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    16. Víctor Hugo Durán Zuazo & Dionisio Franco Tarifa & Belén Cárceles Rodríguez & Baltasar Gálvez Ruiz & Pedro Cermeño Sacristán & Simón Cuadros Tavira & Iván Francisco García-Tejero, 2021. "Mango fruit quality improvements in response to water stress: implications for adaptation under environmental constraints," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 48(1), pages 1-11.
    17. Li, Fusheng & Wei, Caihui & Zhang, Fucang & Zhang, Jianhua & Nong, Mengling & Kang, Shaozhong, 2010. "Water-use efficiency and physiological responses of maize under partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 97(8), pages 1156-1164, August.
    18. Guizani, Monia & Dabbou, Samia & Maatallah, Samira & Montevecchi, Giuseppe & Hajlaoui, Hichem & Rezig, Mourad & Helal, Ahmed Noureddine & Kilani-Jaziri, Soumaya, 2019. "Physiological responses and fruit quality of four peach cultivars under sustained and cyclic deficit irrigation in center-west of Tunisia," Agricultural Water Management, Elsevier, vol. 217(C), pages 81-97.
    19. Romero, Pascual & Muñoz, Rocío Gil & Fernández-Fernández, J.I. & del Amor, Francisco M. & Martínez-Cutillas, Adrián & García-García, José, 2015. "Improvement of yield and grape and wine composition in field-grown Monastrell grapevines by partial root zone irrigation, in comparison with regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 149(C), pages 55-73.
    20. Shu, Liang-Zuo & Liu, Rui & Min, Wei & Wang, Yao-sheng & Hong-mei, Yu & Zhu, Peng-fei & Zhu, Ji-rong, 2020. "Regulation of soil water threshold on tomato plant growth and fruit quality under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 238(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:156:y:2015:i:c:p:70-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.