IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v152y2015icp91-98.html
   My bibliography  Save this article

Optimal tensiometer placement for high-frequency subsurface drip irrigation management in heterogeneous soils

Author

Listed:
  • Dabach, Sharon
  • Shani, Uri
  • Lazarovitch, Naftali

Abstract

Efficient control of irrigation systems depends on attaining representative water status data for an irrigated field. The spatial variability of soil hydraulic properties and root growth patterns, hamper the use of single-value representations. This work proposes a two-pronged approach designed for determining optimal sensor location for irrigation water management. It combines experimental results, which offer a method of pre-determining root growth patterns, with modeling analysis in which the effect of tensiometer location on coefficient of variation (CV) of matric head measurements and irrigation system operation was investigated.

Suggested Citation

  • Dabach, Sharon & Shani, Uri & Lazarovitch, Naftali, 2015. "Optimal tensiometer placement for high-frequency subsurface drip irrigation management in heterogeneous soils," Agricultural Water Management, Elsevier, vol. 152(C), pages 91-98.
  • Handle: RePEc:eee:agiwat:v:152:y:2015:i:c:p:91-98
    DOI: 10.1016/j.agwat.2015.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415000128
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hodnett, M. G. & Bell, J. P. & Ah Koon, P. D. & Soopramanien, G. C. & Batchelor, C. H., 1990. "The control of drip irrigation of sugarcane using "index" tensiometers: Some comparisons with control by the water budget method," Agricultural Water Management, Elsevier, vol. 17(1-3), pages 189-207, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erazo-Mesa, Edwin & Gómez, Edgar Hincapié & Sánchez, Andrés Echeverri, 2022. "Surface soil water content as an indicator of Hass avocado irrigation scheduling," Agricultural Water Management, Elsevier, vol. 273(C).
    2. Kiani, Mina & Gheysari, Mahdi & Mostafazadeh-Fard, Behrouz & Majidi, Mohammad Mahdi & Karchani, Kazem & Hoogenboom, Gerrit, 2016. "Effect of the interaction of water and nitrogen on sunflower under drip irrigation in an arid region," Agricultural Water Management, Elsevier, vol. 171(C), pages 162-172.
    3. Müller, T. & Ranquet Bouleau, C. & Perona, P., 2016. "Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds," Agricultural Water Management, Elsevier, vol. 177(C), pages 54-65.
    4. Zubelzu, Sergio & Rodriguez-Sinobas, Leonor & Saa-Requejo, Antonio & Benitez, Javier & Tarquis, Ana M., 2019. "Assessing soil water content variability through active heat distributed fiber optic temperature sensing," Agricultural Water Management, Elsevier, vol. 212(C), pages 193-202.
    5. Bristow, Keith L. & Šimůnek, Jirka & Helalia, Sarah A. & Siyal, Altaf A., 2020. "Numerical simulations of the effects furrow surface conditions and fertilizer locations have on plant nitrogen and water use in furrow irrigated systems," Agricultural Water Management, Elsevier, vol. 232(C).
    6. Jiao, Maqian & Yang, Wenhan & Hu, Wei & Clothier, Brent & Zou, Songyan & Li, Doudou & Di, Nan & Liu, Jinqiang & Liu, Yang & Duan, Jie & Xi, Benye, 2021. "The optimal tensiometer installation position for scheduling border irrigation in Populus tomentosa plantations," Agricultural Water Management, Elsevier, vol. 253(C).
    7. Gong, Xuewen & Li, Xiaoming & Li, Yu & Bo, Guokui & Qiu, Rangjian & Huang, Zongdong & Gao, Shikai & Wang, Shunsheng, 2023. "An improved model to simulate soil water and heat: A case study for drip-irrigated tomato grown in a greenhouse," Agricultural Water Management, Elsevier, vol. 277(C).
    8. Nolz, R. & Cepuder, P. & Balas, J. & Loiskandl, W., 2016. "Soil water monitoring in a vineyard and assessment of unsaturated hydraulic parameters as thresholds for irrigation management," Agricultural Water Management, Elsevier, vol. 164(P2), pages 235-242.
    9. Reinhard NOLZ & Willibald LOISKANDL, 2017. "Evaluating soil water content data monitored at different locations in a vineyard with regard to irrigation control," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 12(3), pages 152-160.
    10. Reinhard NOLZ & Willibald LOISKANDL & Gerhard KAMMERER & Margarita L. HIMMELBAUER, 2016. "Survey of soil water distribution in a vineyard and implications for subsurface drip irrigation control," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 11(4), pages 250-258.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alamilla-Magaña, J.C. & Carrillo-Ávila, E. & Obrador-Olán, J.J. & Landeros-Sánchez, C. & Vera-Lopez, J. & Juárez-López, J.F., 2016. "Soil moisture tension effect on sugar cane growth and yield," Agricultural Water Management, Elsevier, vol. 177(C), pages 264-273.
    2. Batchelor, Charles, 1999. "Improving water use efficiency as part of integrated catchment management," Agricultural Water Management, Elsevier, vol. 40(2-3), pages 249-263, May.
    3. Wiedenfeld, Bob, 2004. "Scheduling water application on drip irrigated sugarcane," Agricultural Water Management, Elsevier, vol. 64(2), pages 169-181, January.
    4. Zhang, Tibin & Dong, Qin’ge & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao, 2019. "Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production," Agricultural Water Management, Elsevier, vol. 213(C), pages 636-645.
    5. Gaudin, Remi & Rapanoelina, Mamisoa, 2003. "Irrigation based on a nomogram using soil suction measurements," Agricultural Water Management, Elsevier, vol. 58(1), pages 45-53, January.
    6. Wang, Feng-Xin & Kang, Yaohu & Liu, Shi-Ping & Hou, Xiao-Yan, 2007. "Effects of soil matric potential on potato growth under drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 34-42, March.
    7. Jiao, Maqian & Yang, Wenhan & Hu, Wei & Clothier, Brent & Zou, Songyan & Li, Doudou & Di, Nan & Liu, Jinqiang & Liu, Yang & Duan, Jie & Xi, Benye, 2021. "The optimal tensiometer installation position for scheduling border irrigation in Populus tomentosa plantations," Agricultural Water Management, Elsevier, vol. 253(C).
    8. Wang, Dan & Kang, Yaohu & Wan, Shuqin, 2007. "Effect of soil matric potential on tomato yield and water use under drip irrigation condition," Agricultural Water Management, Elsevier, vol. 87(2), pages 180-186, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:152:y:2015:i:c:p:91-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.