IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i8d10.1007_s11269-020-02569-6.html
   My bibliography  Save this article

Accounting for Inter-Annual and Seasonal Variability in Assessment of Water Supply Stress: Perspectives from a humid region in the USA

Author

Listed:
  • Hisham Eldardiry

    (University of Louisiana at Lafayette
    University of Washington)

  • Emad Habib

    (University of Louisiana at Lafayette)

  • David M. Borrok

    (Missouri University of Science and Technology)

Abstract

Stresses on water systems can be quantitatively assessed through indices that account for water demand relative to water availability, e.g., the Water Supply Stress Index (WaSSI). However, as a result of adopting deterministic supply-driven approaches, limited attention is paid to the potential impacts of climatic variability on quantifying water stresses. The current study aimed to account for the impacts of inter-annual and intra-annual variability in the WaSSI stress index and to provide insights into potential opportunities for better water management practices. The results from our analysis indicate that looking only at average stresses can substantially mask the important impacts of climate variability. Louisiana, as a typical example of humid regions in the USA, is subjected to high levels of stresses (WaSSI exceeds 1.0) with higher inter-annual variability in watersheds where thermoelectric power plants exist and extensive water is used for cooling process. In addition, intra-annual variability in some watersheds shows periodicity in terms of seasonal stress distributions due to variability in surface water supply and water demand. Our analysis indicated that the stress variability grows as the median WaSSI increases but up to a certain threshold level and then the variability decreases for very high stress levels. For the annual and monthly scales, the peak variability, quantified as the width of the 2.5–97.5 stress percentiles, reached 68% for a median annual WaSSI of 1.00 and 100% for a median monthly WaSSI of 1.15, respectively. Various decisions related to water use and management can be driven by such variability, at both annual and intra-annual scales. Hence, these results have important implications for applied water resource studies aiming to formulate water management policies and improve water system sustainability under climate variability.

Suggested Citation

  • Hisham Eldardiry & Emad Habib & David M. Borrok, 2020. "Accounting for Inter-Annual and Seasonal Variability in Assessment of Water Supply Stress: Perspectives from a humid region in the USA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2517-2534, June.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:8:d:10.1007_s11269-020-02569-6
    DOI: 10.1007/s11269-020-02569-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02569-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02569-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Greve & T. Kahil & J. Mochizuki & T. Schinko & Y. Satoh & P. Burek & G. Fischer & S. Tramberend & R. Burtscher & S. Langan & Y. Wada, 2018. "Global assessment of water challenges under uncertainty in water scarcity projections," Nature Sustainability, Nature, vol. 1(9), pages 486-494, September.
    2. Nigel Arnell & Ben Lloyd-Hughes, 2014. "The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios," Climatic Change, Springer, vol. 122(1), pages 127-140, January.
    3. Chen, Chao & Wang, Enli & Yu, Qiang, 2010. "Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1175-1184, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junguo Liu & Delong Li & He Chen & Hong Wang & Yoshihide Wada & Matti Kummu & Simon Newland Gosling & Hong Yang & Yadu Pokhrel & Philippe Ciais, 2024. "Timing the first emergence and disappearance of global water scarcity," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Zhai, Yijie & Bai, Yueyang & Shen, Xiaoxu & Zhang, Tianzuo & Jia, Yuke & Ren, Ke & Zhou, Xinying & Cheng, Ziyue & Hong, Jinglan, 2023. "Provincial water availability footprint evaluation and transfer analysis of China’s grain products: A life cycle perspective," Agricultural Water Management, Elsevier, vol. 276(C).
    3. Abdelaziz A Gohar & Adrian Cashman & Abdelaziz A Gohar, 2017. "Climate Change Impacts on Water Scarcity and Food Security in Tropical Environments: The Case of Caribbean Region," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 3(2), pages 57-59, - July.
    4. Liu, Mengyu & Zhou, Xiong & Huang, Guohe & Li, Yongping, 2024. "The increasing water stress projected for China could shift the agriculture and manufacturing industry geographically," LSE Research Online Documents on Economics 124431, London School of Economics and Political Science, LSE Library.
    5. Min Zhu & Zengxin Zhang & Bin Zhu & Rui Kong & Fengying Zhang & Jiaxi Tian & Tong Jiang, 2020. "Population and Economic Projections in the Yangtze River Basin Based on Shared Socioeconomic Pathways," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    6. Hossein Mikhak & Mehdi Rahimian & Saeed Gholamrezai, 2022. "Implications of changing cropping pattern to low water demand plants due to climate change: evidence from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9833-9850, August.
    7. Luo, Jianmei & Shen, Yanjun & Qi, Yongqing & Zhang, Yucui & Xiao, Dengpan, 2018. "Evaluating water conservation effects due to cropping system optimization on the Beijing-Tianjin-Hebei plain, China," Agricultural Systems, Elsevier, vol. 159(C), pages 32-41.
    8. Felix Schmid & Jorge Leandro, 2024. "A Data-Driven Multi-Step Flood Inundation Forecast System," Forecasting, MDPI, vol. 6(3), pages 1-21, September.
    9. Nicholas A. Cradock-Henry & Bob Frame & Benjamin L. Preston & Andy Reisinger & Dale S. Rothman, 2018. "Dynamic adaptive pathways in downscaled climate change scenarios," Climatic Change, Springer, vol. 150(3), pages 333-341, October.
    10. Matteo Giuliani & Andrea Castelletti, 2016. "Is robustness really robust? How different definitions of robustness impact decision-making under climate change," Climatic Change, Springer, vol. 135(3), pages 409-424, April.
    11. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    12. Deyou Yu & Licong Xu & Kaixing Fu & Xia Liu & Shanli Wang & Minghua Wu & Wangyang Lu & Chunyu Lv & Jinming Luo, 2024. "Electronic structure modulation of iron sites with fluorine coordination enables ultra-effective H2O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Puyu Feng & Bin Wang & De Li Liu & Hongtao Xing & Fei Ji & Ian Macadam & Hongyan Ruan & Qiang Yu, 2018. "Impacts of rainfall extremes on wheat yield in semi-arid cropping systems in eastern Australia," Climatic Change, Springer, vol. 147(3), pages 555-569, April.
    14. Li, Mo & Cao, Xiaoxu & Liu, Dong & Fu, Qiang & Li, Tianxiao & Shang, Ruochen, 2022. "Sustainable management of agricultural water and land resources under changing climate and socio-economic conditions: A multi-dimensional optimization approach," Agricultural Water Management, Elsevier, vol. 259(C).
    15. Li, Yizhuo & Tian, Di & Feng, Gary & Yang, Wei & Feng, Liping, 2021. "Climate change and cover crop effects on water use efficiency of a corn-soybean rotation system," Agricultural Water Management, Elsevier, vol. 255(C).
    16. Mengru Wang & Benjamin Leon Bodirsky & Rhodé Rijneveld & Felicitas Beier & Mirjam P. Bak & Masooma Batool & Bram Droppers & Alexander Popp & Michelle T. H. Vliet & Maryna Strokal, 2024. "A triple increase in global river basins with water scarcity due to future pollution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Ojeda, Jonathan J. & Volenec, Jeffrey J. & Brouder, Sylvie M. & Caviglia, Octavio P. & Agnusdei, Mónica G., 2018. "Modelling stover and grain yields, and subsurface artificial drainage from long-term corn rotations using APSIM," Agricultural Water Management, Elsevier, vol. 195(C), pages 154-171.
    18. Shengli Liu & Wenbin Wu & Xiaoguang Yang & Peng Yang & Jing Sun, 2020. "Exploring drought dynamics and its impacts on maize yield in the Huang-Huai-Hai farming region of China," Climatic Change, Springer, vol. 163(1), pages 415-430, November.
    19. Hao, Shirui & Ryu, Dongryeol & Western, Andrew & Perry, Eileen & Bogena, Heye & Franssen, Harrie Jan Hendricks, 2021. "Performance of a wheat yield prediction model and factors influencing the performance: A review and meta-analysis," Agricultural Systems, Elsevier, vol. 194(C).
    20. Zhiqiang Yin & Yixin Hu & Katie Jenkins & Yi He & Nicole Forstenhäusler & Rachel Warren & Lili Yang & Rhosanna Jenkins & Dabo Guan, 2021. "Assessing the economic impacts of future fluvial flooding in six countries under climate change and socio-economic development," Climatic Change, Springer, vol. 166(3), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:8:d:10.1007_s11269-020-02569-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.