IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v164y2016ip1p28-37.html
   My bibliography  Save this article

Scheduling regulated deficit irrigation in a hedgerow olive orchard from leaf turgor pressure related measurements

Author

Listed:
  • Padilla-Díaz, C.M.
  • Rodriguez-Dominguez, C.M.
  • Hernandez-Santana, V.
  • Perez-Martin, A.
  • Fernández, J.E.

Abstract

Regulated deficit irrigation (RDI) has been proposed as one of the most promising irrigation strategies for hedgerow fruit orchards with high plant densities. Scheduling a RDI strategy, however, is highly demanding, since the targeted water savings must be achieved at the same time that episodes of excessive water stress are avoided when the crop is most sensitive to drought. Here we tested an approach to schedule a RDI strategy supplying 45% of the crop irrigation needs, specially designed for hedgerow olive orchards. Our approach is based on the use of a water stress indicator derived from the shape of the daily curves recorded with ZIM sensors, which are related to the leaf turgor pressure. We worked in a mature, fully productive ‘Arbequina’ olive orchard with 1667 trees ha−1, under both a daily irrigated (FI) treatment and the mentioned RDI strategy. We found that the relation between the shape of the curves and the tree water stress levels holds for olive trees of different age under a wide range of growing conditions. We were able to schedule irrigation just from the visual analysis of the curves derived from the ZIM outputs, without any further data processing. A comparison with the crop coefficient approach showed that, with our approach, we achieved greater water savings without affecting neither the trees water status nor the crop performance. Still, further studies are required to confirm whether empirical aspects of our approach are limiting and, if so, to derive suitable alternatives.

Suggested Citation

  • Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernández, J.E., 2016. "Scheduling regulated deficit irrigation in a hedgerow olive orchard from leaf turgor pressure related measurements," Agricultural Water Management, Elsevier, vol. 164(P1), pages 28-37.
  • Handle: RePEc:eee:agiwat:v:164:y:2016:i:p1:p:28-37
    DOI: 10.1016/j.agwat.2015.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415300688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diaz-Espejo, A. & Buckley, T.N. & Sperry, J.S. & Cuevas, M.V. & de Cires, A. & Elsayed-Farag, S. & Martin-Palomo, M.J. & Muriel, J.L. & Perez-Martin, A. & Rodriguez-Dominguez, C.M. & Rubio-Casal, A.E., 2012. "Steps toward an improvement in process-based models of water use by fruit trees: A case study in olive," Agricultural Water Management, Elsevier, vol. 114(C), pages 37-49.
    2. Ben-Gal, Alon & Kool, Dilia & Agam, Nurit & van Halsema, Gerardo E. & Yermiyahu, Uri & Yafe, Ariel & Presnov, Eugene & Erel, Ran & Majdop, Ahmed & Zipori, Isaac & Segal, Eran & Rüger, Simon & Zimmerma, 2010. "Whole-tree water balance and indicators for short-term drought stress in non-bearing 'Barnea' olives," Agricultural Water Management, Elsevier, vol. 98(1), pages 124-133, December.
    3. Rüger, S. & Ehrenberger, W. & Arend, M. & Geßner, P. & Zimmermann, G. & Zimmermann, D. & Bentrup, F.-W. & Nadler, A. & Raveh, E. & Sukhorukov, V.L. & Zimmermann, U., 2010. "Comparative monitoring of temporal and spatial changes in tree water status using the non-invasive leaf patch clamp pressure probe and the pressure bomb," Agricultural Water Management, Elsevier, vol. 98(2), pages 283-290, December.
    4. ., 1994. "Williamson, Oliver E," Chapters, in: Geoffrey M. Hodgson & Warren J. Samuels & Marc R. Tool (ed.), The Elgar Companion to Institutional and Evolutionary Economics, volume 0, chapter 127, Edward Elgar Publishing.
    5. Cuevas, M.V. & Torres-Ruiz, J.M. & Álvarez, R. & Jiménez, M.D. & Cuerva, J. & Fernández, J.E., 2010. "Assessment of trunk diameter variation derived indices as water stress indicators in mature olive trees," Agricultural Water Management, Elsevier, vol. 97(9), pages 1293-1302, September.
    6. Grattan, S.R. & Berenguer, M.J. & Connell, J.H. & Polito, V.S. & Vossen, P.M., 2006. "Olive oil production as influenced by different quantities of applied water," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 133-140, September.
    7. Fernández, J.E. & Rodriguez-Dominguez, C.M. & Perez-Martin, A. & Zimmermann, U. & Rüger, S. & Martín-Palomo, M.J. & Torres-Ruiz, J.M. & Cuevas, M.V. & Sann, C. & Ehrenberger, W. & Diaz-Espejo, A., 2011. "Online-monitoring of tree water stress in a hedgerow olive orchard using the leaf patch clamp pressure probe," Agricultural Water Management, Elsevier, vol. 100(1), pages 25-35.
    8. Rousseaux, M. Cecilia & Figuerola, Patricia I. & Correa-Tedesco, Guillermo & Searles, Peter S., 2009. "Seasonal variations in sap flow and soil evaporation in an olive (Olea europaea L.) grove under two irrigation regimes in an arid region of Argentina," Agricultural Water Management, Elsevier, vol. 96(6), pages 1037-1044, June.
    9. Rodriguez-Dominguez, C.M. & Ehrenberger, W. & Sann, C. & Rüger, S. & Sukhorukov, V. & Martín-Palomo, M.J. & Diaz-Espejo, A. & Cuevas, M.V. & Torres-Ruiz, J.M. & Perez-Martin, A. & Zimmermann, U. & Fer, 2012. "Concomitant measurements of stem sap flow and leaf turgor pressure in olive trees using the leaf patch clamp pressure probe," Agricultural Water Management, Elsevier, vol. 114(C), pages 50-58.
    10. Moriana, A. & Girón, I.F. & Martín-Palomo, M.J. & Conejero, W. & Ortuño, M.F. & Torrecillas, A. & Moreno, F., 2010. "New approach for olive trees irrigation scheduling using trunk diameter sensors," Agricultural Water Management, Elsevier, vol. 97(11), pages 1822-1828, November.
    11. Ortuño, M.F. & Conejero, W. & Moreno, F. & Moriana, A. & Intrigliolo, D.S. & Biel, C. & Mellisho, C.D. & Pérez-Pastor, A. & Domingo, R. & Ruiz-Sánchez, M.C. & Casadesus, J. & Bonany, J. & Torrecillas,, 2010. "Could trunk diameter sensors be used in woody crops for irrigation scheduling? A review of current knowledge and future perspectives," Agricultural Water Management, Elsevier, vol. 97(1), pages 1-11, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camoglu, Gokhan & Demirel, Kursad & Kahriman, Fatih & Akcal, Arda & Nar, Hakan & Boran, Ahmet & Eroglu, Ilker & Genc, Levent, 2021. "Discrimination of water stress in pepper using thermography and leaf turgor pressure probe techniques," Agricultural Water Management, Elsevier, vol. 254(C).
    2. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    3. Egea, Gregorio & Fernández, José E. & Alcon, Francisco, 2017. "Financial assessment of adopting irrigation technology for plant-based regulated deficit irrigation scheduling in super high-density olive orchards," Agricultural Water Management, Elsevier, vol. 187(C), pages 47-56.
    4. Wu, Yinshan & Jiang, Jie & Zhang, Xiufeng & Zhang, Jiayi & Cao, Qiang & Tian, Yongchao & Zhu, Yan & Cao, Weixing & Liu, Xiaojun, 2023. "Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice," Agricultural Water Management, Elsevier, vol. 289(C).
    5. Alcaras, L. Martín Agüero & Rousseaux, M. Cecilia & Searles, Peter S., 2016. "Responses of several soil and plant indicators to post-harvest regulated deficit irrigation in olive trees and their potential for irrigation scheduling," Agricultural Water Management, Elsevier, vol. 171(C), pages 10-20.
    6. Zare Abyaneh, Hamid & Jovzi, Mehdi & Albaji, Mohammad, 2017. "Effect of regulated deficit irrigation, partial root drying and N-fertilizer levels on sugar beet crop (Beta vulgaris L.)," Agricultural Water Management, Elsevier, vol. 194(C), pages 13-23.
    7. Galioto, Francesco & Battilani, Adriano, 2021. "Agro-economic simulation for day by day irrigation scheduling optimisation," Agricultural Water Management, Elsevier, vol. 248(C).
    8. Marino, Giulia & Pernice, Fulvio & Marra, Francesco Paolo & Caruso, Tiziano, 2016. "Validation of an online system for the continuous monitoring of tree water status for sustainable irrigation managements in olive (Olea europaea L.)," Agricultural Water Management, Elsevier, vol. 177(C), pages 298-307.
    9. Hernandez-Santana, V. & Fernández, J.E. & Cuevas, M.V. & Perez-Martin, A. & Diaz-Espejo, A., 2017. "Photosynthetic limitations by water deficit: Effect on fruit and olive oil yield, leaf area and trunk diameter and its potential use to control vegetative growth of super-high density olive orchards," Agricultural Water Management, Elsevier, vol. 184(C), pages 9-18.
    10. Fernandes, R.D.M. & Egea, G. & Hernandez-Santana, V. & Diaz-Espejo, A. & Fernández, J.E. & Perez-Martin, A. & Cuevas, M.V., 2021. "Response of vegetative and fruit growth to the soil volume wetted by irrigation in a super-high-density olive orchard," Agricultural Water Management, Elsevier, vol. 258(C).
    11. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernandes, R.D.M. & Montero, A. & García, J.M. & Fernández, J.E., 2018. "Water status, gas exchange and crop performance in a super high density olive orchard under deficit irrigation scheduled from leaf turgor measurements," Agricultural Water Management, Elsevier, vol. 202(C), pages 241-252.
    12. Egea, Gregorio & Padilla-Díaz, Carmen M. & Martinez-Guanter, Jorge & Fernández, José E. & Pérez-Ruiz, Manuel, 2017. "Assessing a crop water stress index derived from aerial thermal imaging and infrared thermometry in super-high density olive orchards," Agricultural Water Management, Elsevier, vol. 187(C), pages 210-221.
    13. García-Tejero, I.F. & Hernández, A. & Padilla-Díaz, C.M. & Diaz-Espejo, A. & Fernández, J.E, 2017. "Assessing plant water status in a hedgerow olive orchard from thermography at plant level," Agricultural Water Management, Elsevier, vol. 188(C), pages 50-60.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alcaras, L. Martín Agüero & Rousseaux, M. Cecilia & Searles, Peter S., 2016. "Responses of several soil and plant indicators to post-harvest regulated deficit irrigation in olive trees and their potential for irrigation scheduling," Agricultural Water Management, Elsevier, vol. 171(C), pages 10-20.
    2. Fernández, J.E., 2014. "Plant-based sensing to monitor water stress: Applicability to commercial orchards," Agricultural Water Management, Elsevier, vol. 142(C), pages 99-109.
    3. Chehab, Hechmi & Tekaya, Mariem & Mechri, Beligh & Jemai, Abdelmajid & Guiaa, Mohamed & Mahjoub, Zoubeir & Boujnah, Dalenda & Laamari, Salwa & Chihaoui, Badreddine & Zakhama, Houda & Hammami, Mohamed , 2017. "Effect of the Super Absorbent Polymer Stockosorb® on leaf turgor pressure, tree performance and oil quality of olive trees cv. Chemlali grown under field conditions in an arid region of Tunisia," Agricultural Water Management, Elsevier, vol. 192(C), pages 221-231.
    4. García-Tejero, I.F. & Hernández, A. & Padilla-Díaz, C.M. & Diaz-Espejo, A. & Fernández, J.E, 2017. "Assessing plant water status in a hedgerow olive orchard from thermography at plant level," Agricultural Water Management, Elsevier, vol. 188(C), pages 50-60.
    5. Egea, Gregorio & Fernández, José E. & Alcon, Francisco, 2017. "Financial assessment of adopting irrigation technology for plant-based regulated deficit irrigation scheduling in super high-density olive orchards," Agricultural Water Management, Elsevier, vol. 187(C), pages 47-56.
    6. Marino, Giulia & Pernice, Fulvio & Marra, Francesco Paolo & Caruso, Tiziano, 2016. "Validation of an online system for the continuous monitoring of tree water status for sustainable irrigation managements in olive (Olea europaea L.)," Agricultural Water Management, Elsevier, vol. 177(C), pages 298-307.
    7. Abdelfatah, Ashraf & Aranda, Xavier & Savé, Robert & de Herralde, Felicidad & Biel, Carmen, 2013. "Evaluation of the response of maximum daily shrinkage in young cherry trees submitted to water stress cycles in a greenhouse," Agricultural Water Management, Elsevier, vol. 118(C), pages 150-158.
    8. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernandes, R.D.M. & Montero, A. & García, J.M. & Fernández, J.E., 2018. "Water status, gas exchange and crop performance in a super high density olive orchard under deficit irrigation scheduled from leaf turgor measurements," Agricultural Water Management, Elsevier, vol. 202(C), pages 241-252.
    9. Pérez-López, D. & Pérez-Rodríguez, J.M. & Moreno, M.M. & Prieto, M.H. & Ramírez-Santa-Pau, M. & Gijón, M.C. & Guerrero, J. & Moriana, A., 2013. "Influence of different cultivars–locations on maximum daily shrinkage indicators: Limits to the reference baseline approach," Agricultural Water Management, Elsevier, vol. 127(C), pages 31-39.
    10. Vita Serman, Facundo & Orgaz, Francisco & Starobinsky, Gabriela & Capraro, Flavio & Fereres, Elias, 2021. "Water productivity and net profit of high-density olive orchards in San Juan, Argentina," Agricultural Water Management, Elsevier, vol. 252(C).
    11. Morales-Sillero, A. & García, J.M. & Torres-Ruiz, J.M. & Montero, A. & Sánchez-Ortiz, A. & Fernández, J.E., 2013. "Is the productive performance of olive trees under localized irrigation affected by leaving some roots in drying soil?," Agricultural Water Management, Elsevier, vol. 123(C), pages 79-92.
    12. Fernandes, R.D.M. & Egea, G. & Hernandez-Santana, V. & Diaz-Espejo, A. & Fernández, J.E. & Perez-Martin, A. & Cuevas, M.V., 2021. "Response of vegetative and fruit growth to the soil volume wetted by irrigation in a super-high-density olive orchard," Agricultural Water Management, Elsevier, vol. 258(C).
    13. Martín-Palomo, M.J. & Corell, M. & Andreu, L. & López-Moreno, Y.E. & Galindo, A. & Moriana, A., 2021. "Identification of water stress conditions in olive trees through frequencies of trunk growth rate," Agricultural Water Management, Elsevier, vol. 247(C).
    14. Corell, M. & Martín-Palomo, M.J. & Girón, I. & Andreu, L. & Trigo, E. & López-Moreno, Y.E. & Torrecillas, A. & Centeno, A. & Pérez-López, D. & Moriana, A., 2019. "Approach using trunk growth rate data to identify water stress conditions in olive trees," Agricultural Water Management, Elsevier, vol. 222(C), pages 12-20.
    15. Du, Shaoqing & Tong, Ling & Zhang, Xiaotao & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Signal intensity based on maximum daily stem shrinkage can reflect the water status of apple trees under alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 190(C), pages 21-30.
    16. Rodriguez-Dominguez, C.M. & Ehrenberger, W. & Sann, C. & Rüger, S. & Sukhorukov, V. & Martín-Palomo, M.J. & Diaz-Espejo, A. & Cuevas, M.V. & Torres-Ruiz, J.M. & Perez-Martin, A. & Zimmermann, U. & Fer, 2012. "Concomitant measurements of stem sap flow and leaf turgor pressure in olive trees using the leaf patch clamp pressure probe," Agricultural Water Management, Elsevier, vol. 114(C), pages 50-58.
    17. De la Rosa, J.M. & Domingo, R. & Gómez-Montiel, J. & Pérez-Pastor, A., 2015. "Implementing deficit irrigation scheduling through plant water stress indicators in early nectarine trees," Agricultural Water Management, Elsevier, vol. 152(C), pages 207-216.
    18. Agüero Alcaras, L. Martín & Rousseaux, M. Cecilia & Searles, Peter S., 2021. "Yield and water productivity responses of olive trees (cv. Manzanilla) to post-harvest deficit irrigation in a non-Mediterranean climate," Agricultural Water Management, Elsevier, vol. 245(C).
    19. Siakou, M. & Bruggeman, A. & Eliades, M. & Zoumides, C. & Djuma, H. & Kyriacou, M.C. & Emmanouilidou, M.G. & Spyros, A. & Manolopoulou, E. & Moriana, A., 2021. "Effects of deficit irrigation on ‘Koroneiki’ olive tree growth, physiology and olive oil quality at different harvest dates," Agricultural Water Management, Elsevier, vol. 258(C).
    20. Silber, A. & Naor, A. & Israeli, Y. & Assouline, S., 2013. "Combined effect of irrigation regime and fruit load on the patterns of trunk-diameter variation of ‘Hass’ avocado at different phenological periods," Agricultural Water Management, Elsevier, vol. 129(C), pages 87-94.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:164:y:2016:i:p1:p:28-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.