IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v159y2015icp176-184.html
   My bibliography  Save this article

Modeling soil–water dynamics and soil–water carrying capacity for vegetation on the Loess Plateau, China

Author

Listed:
  • Liu, Bingxia
  • Shao, Ming’an

Abstract

The conflict between soil desiccation and the sustainable development of revegetation is increasingly important on the Loess Plateau in China. Quantitative guidelines for the selection of plant species, optimal density or biomass, and appropriate management for vegetative restoration are required to address this conflict. The objective of the study is to simulate soil–water dynamics with using the one-dimensional Simultaneous Heat and Water Transfer (SHAW) model to assess consumption process of soil water with growth of caragana and alfalfa and there optimal carrying capacity. Soil and plant parameters required by the SHAW model were calibrated and validated with meteorological and soil–water data from 2004 to 2005 and 2012, respectively. The data from the calibration and verification trials for soil water content were significantly linearly correlated based on a 95% confidence level and had average root mean square errors of 1.06 and 5.71% for caragana and 0.88 and 1.14% for alfalfa, respectively. The SHAW model was thus sufficiently accurate for simulating soil–water dynamics during 2005–2011 in response to plant growing and corresponding changes in biomass. The simulations indicated that soil water decreased within 1.0–4.0m profiles and that the depth of water depletion deepened with plant growth after vegetative restoration. Dry soil layers (DSLs) began to develop below 1.0 m after five years for caragana and after three years for alfalfa. The optimal ages of the caragana and alfalfa in the study area were thus five and three years, respectively, and the corresponding soil water carrying capacities that were maximum biomasses were 4800kg/hm2 and 1380kg/hm2, respectively. These results provide useful information for designing appropriate practices of vegetative restoration to attain sustainable ecological and economic benefits on the Loess Plateau.

Suggested Citation

  • Liu, Bingxia & Shao, Ming’an, 2015. "Modeling soil–water dynamics and soil–water carrying capacity for vegetation on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 159(C), pages 176-184.
  • Handle: RePEc:eee:agiwat:v:159:y:2015:i:c:p:176-184
    DOI: 10.1016/j.agwat.2015.06.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415300366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.06.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, Shaozhong & Gu, Binjie & Du, Taisheng & Zhang, Jianhua, 2003. "Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region," Agricultural Water Management, Elsevier, vol. 59(3), pages 239-254, April.
    2. Huang, Mingbin & Gallichand, Jacques, 2006. "Use of the SHAW model to assess soil water recovery after apple trees in the gully region of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 67-76, September.
    3. Dongli She & Dongdong Liu & Yongqiu Xia & Ming’an Shao, 2014. "Modeling Effects of Land use and Vegetation Density on Soil Water Dynamics: Implications on Water Resource Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 2063-2076, May.
    4. Xia, Y.Q. & Shao, M.A., 2008. "Soil water carrying capacity for vegetation: A hydrologic and biogeochemical process model solution," Ecological Modelling, Elsevier, vol. 214(2), pages 112-124.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Bingxia & Jia, Xiaoxu & Shao, Ming'an & Jia, Yuhua, 2022. "Assessing soil water recovery after converting planted shrubs and grass to natural grass in the northern Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 264(C).
    2. Huang, Zhenyu & Zhang, Junxiao & Ren, Dongyang & Hu, Jiaqi & Xia, Guimin & Pan, Baozhu, 2022. "Modeling and assessing water and nitrogen use and crop growth of peanut in semi-arid areas of Northeast China," Agricultural Water Management, Elsevier, vol. 267(C).
    3. Dexi Zhan & Yongqi Mu & Wenxu Duan & Mingzhu Ye & Yingqiang Song & Zhenqi Song & Kaizhong Yao & Dengkuo Sun & Ziqi Ding, 2023. "Spatial Prediction and Mapping of Soil Water Content by TPE-GBDT Model in Chinese Coastal Delta Farmland with Sentinel-2 Remote Sensing Data," Agriculture, MDPI, vol. 13(5), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turkeltaub, Tuvia & Gongadze, Kate & Lü, Yihe & Huang, Mingbin & Jia, Xiaoxu & Yang, Huiyi & Shao, Ming'an & Binley, Andrew & Harris, Paul & Wu, Lianhai, 2022. "A review of models for simulating the soil-plant interface for different climatic conditions and land uses in the Loess Plateau, China," Ecological Modelling, Elsevier, vol. 474(C).
    2. Feng, Yu & Gong, Daozhi & Mei, Xurong & Hao, Weiping & Tang, Dahua & Cui, Ningbo, 2017. "Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 191(C), pages 193-206.
    3. Lu Zhuo & Dawei Han & Qiang Dai & Tanvir Islam & Prashant Srivastava, 2015. "Appraisal of NLDAS-2 Multi-Model Simulated Soil Moistures for Hydrological Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3503-3517, August.
    4. Yu Zhang & Wei Li & Shaodan Li & Baoni Xie & Fangzhong Shi & Jianxia Zhao, 2022. "Spatial Distribution of Optimal Plant Cover and Its Influencing Factors for Populus simonii Carr. on the Bashang Plateau, China," Land, MDPI, vol. 11(6), pages 1-15, June.
    5. Wang, Weishu & Rong, Yao & Dai, Xiaoqin & Zhang, Chenglong & Wang, Chaozi & Huo, Zailin, 2024. "Variation and attribution of energy distribution for salinized sunflower farmland in arid area," Agricultural Water Management, Elsevier, vol. 297(C).
    6. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    7. Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields," Agricultural Water Management, Elsevier, vol. 181(C), pages 23-34.
    8. Tong, Ling & Kang, Shaozhong & Zhang, Lu, 2007. "Temporal and spatial variations of evapotranspiration for spring wheat in the Shiyang river basin in northwest China," Agricultural Water Management, Elsevier, vol. 87(3), pages 241-250, February.
    9. Riccardo Lo Bianco & Mark Rieger, 2017. "Transpiration/Evaporation Ratio in Prunus Fremontii and Marianna 2624 over a 4-Day Period of Drought," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 7(4), pages 96-99, December.
    10. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Zhuang, Qianlai, 2021. "Evapotranspiration partitioning and water productivity of rainfed maize under contrasting mulching conditions in Northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    12. Gao, Lei & Shao, Mingan, 2012. "Temporal stability of shallow soil water content for three adjacent transects on a hillslope," Agricultural Water Management, Elsevier, vol. 110(C), pages 41-54.
    13. Wang, Yueyue & Horton, Robert & Xue, Xuzhang & Ren, Tusheng, 2021. "Partitioning evapotranspiration by measuring soil water evaporation with heat-pulse sensors and plant transpiration with sap flow gauges," Agricultural Water Management, Elsevier, vol. 252(C).
    14. Lian, Yanhao & Ali, Shahzad & Zhang, Xudong & Wang, Tianlu & Liu, Qi & Jia, Qianmin & Jia, Zhikuan & Han, Qingfang, 2016. "Nutrient and tillage strategies to increase grain yield and water use efficiency in semi-arid areas," Agricultural Water Management, Elsevier, vol. 178(C), pages 137-147.
    15. Alberto, Ma. Carmelita R. & Quilty, James R. & Buresh, Roland J. & Wassmann, Reiner & Haidar, Sam & Correa, Teodoro Q. & Sandro, Joseph M., 2014. "Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 1-12.
    16. Qin, Shujing & Li, Sien & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng & Wang, Yahui & Guo, Hui, 2019. "Transpiration of female and male parents of seed maize in northwest China," Agricultural Water Management, Elsevier, vol. 213(C), pages 397-409.
    17. Yang, Xiaolin & Gao, Wangsheng & Shi, Quanhong & Chen, Fu & Chu, Qingquan, 2013. "Impact of climate change on the water requirement of summer maize in the Huang-Huai-Hai farming region," Agricultural Water Management, Elsevier, vol. 124(C), pages 20-27.
    18. Karandish, Fatemeh & Šimůnek, Jiří, 2016. "A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies," Agricultural Water Management, Elsevier, vol. 178(C), pages 291-303.
    19. Liu, Yi & Li, Shiqing & Chen, Fang & Yang, Shenjiao & Chen, Xinping, 2010. "Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 97(5), pages 769-775, May.
    20. Zhang, Fan & Zhang, Chenglong & Yan, Zehao & Guo, Shanshan & Wang, Youzhi & Guo, Ping, 2018. "An interval nonlinear multiobjective programming model with fuzzy-interval credibility constraint for crop monthly water allocation," Agricultural Water Management, Elsevier, vol. 209(C), pages 123-133.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:159:y:2015:i:c:p:176-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.