IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i6p890-d836629.html
   My bibliography  Save this article

Spatial Distribution of Optimal Plant Cover and Its Influencing Factors for Populus simonii Carr. on the Bashang Plateau, China

Author

Listed:
  • Yu Zhang

    (School of Geographical Sciences, Hebei Normal University, Shijiazhuang 050024, China
    Hebei Key Laboratory of Environmental Change and Ecological Construction, Shijiazhuang 050024, China
    Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Shijiazhuang 050024, China)

  • Wei Li

    (School of Land Science and Space Planning, Hebei GEO University, Shijiazhuang 050031, China
    International Science and Technology Cooperation Base of Hebei Province: Hebei International Joint Research Center for Remote Sensing of Agricultural Drought Monitoring, Hebei GEO University, Shijiazhuang 050031, China)

  • Shaodan Li

    (School of Geographical Sciences, Hebei Normal University, Shijiazhuang 050024, China
    Hebei Key Laboratory of Environmental Change and Ecological Construction, Shijiazhuang 050024, China
    Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Shijiazhuang 050024, China)

  • Baoni Xie

    (School of Land Science and Space Planning, Hebei GEO University, Shijiazhuang 050031, China
    International Science and Technology Cooperation Base of Hebei Province: Hebei International Joint Research Center for Remote Sensing of Agricultural Drought Monitoring, Hebei GEO University, Shijiazhuang 050031, China)

  • Fangzhong Shi

    (School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Jianxia Zhao

    (College of Geography and Land Engineering, Yuxi Normal University, Yuxi 653100, China)

Abstract

The Bashang Plateau is the core zone of the agro-pastoral ecotone in northern China and represents an ecological barrier for preventing the invasion of wind-blown sand in the Beijing–Tianjin–Hebei region. Increasing plant cover to control soil erosion is an effective measure to address land degradation; however, plant cover is different from climatic conditions. In this study, we determined the optimal spatial distribution of Populus simonii Carr., which is a widely planted species used for revegetation on the Bashang Plateau. A modified Biome-BGC model was used to simulate the dynamics of the net primary productivity (NPP), actual evapotranspiration (AET), and leaf-area index (LAI). The model was validated using field-observed tree-ring and MODIS AET and NPP data. The dynamics of AET, NPP and LAI for P. simonii at 122 representative sites in the study area for the period 1980–2019 were simulated by the validated model. The results showed that the spatial distributions of mean AET, NPP, and LAI generally decreased from southeast to northwest. The ranges of optimal plant cover in terms of maximum LAI for P. simonii were 3.3 in the Fengning–Weichang area, 1.9 in the Shangyi–Zhangbei–Guyuan area and 1.3 in the Kangbao area. Mean annual precipitation (MAP), elevation, soil texture and mean annual temperature were the main factors influencing the distribution of AET, NPP and LAI. As the MAP decreased, the correlations between AET, NPP, LAI and precipitation gradually decreased. In different subregions, the factors influencing optimal-plant-cover distribution varied significantly. These quantitative findings provide the optimal plant cover for the dominant tree in different subregions and provide useful information for land degradation management on the Bashang Plateau.

Suggested Citation

  • Yu Zhang & Wei Li & Shaodan Li & Baoni Xie & Fangzhong Shi & Jianxia Zhao, 2022. "Spatial Distribution of Optimal Plant Cover and Its Influencing Factors for Populus simonii Carr. on the Bashang Plateau, China," Land, MDPI, vol. 11(6), pages 1-15, June.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:890-:d:836629
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/6/890/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/6/890/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xia, Y.Q. & Shao, M.A., 2008. "Soil water carrying capacity for vegetation: A hydrologic and biogeochemical process model solution," Ecological Modelling, Elsevier, vol. 214(2), pages 112-124.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junyi Liu & Zhixiang Wu & Siqi Yang & Chuan Yang, 2022. "Sensitivity Analysis of Biome-BGC for Gross Primary Production of a Rubber Plantation Ecosystem: A Case Study of Hainan Island, China," IJERPH, MDPI, vol. 19(21), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Lei & Shao, Mingan, 2012. "Temporal stability of shallow soil water content for three adjacent transects on a hillslope," Agricultural Water Management, Elsevier, vol. 110(C), pages 41-54.
    2. Liu, Bingxia & Shao, Ming’an, 2015. "Modeling soil–water dynamics and soil–water carrying capacity for vegetation on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 159(C), pages 176-184.
    3. Dongli She & Dongdong Liu & Yongqiu Xia & Ming’an Shao, 2014. "Modeling Effects of Land use and Vegetation Density on Soil Water Dynamics: Implications on Water Resource Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 2063-2076, May.
    4. Turner, Benjamin L. & Kodali, Srinadh, 2020. "Soil system dynamics for learning about complex, feedback-driven agricultural resource problems: model development, evaluation, and sensitivity analysis of biophysical feedbacks," Ecological Modelling, Elsevier, vol. 428(C).
    5. Ruiz-Pérez, G. & González-Sanchis, M. & Del Campo, A.D. & Francés, F., 2016. "Can a parsimonious model implemented with satellite data be used for modelling the vegetation dynamics and water cycle in water-controlled environments?," Ecological Modelling, Elsevier, vol. 324(C), pages 45-53.
    6. Defeng Zheng & Yanhui Wang & Yanying Shao & Lixin Wang, 2019. "The Vegetation Dynamics and Climate Change Responses by Leaf Area Index in the Mu Us Desert," Sustainability, MDPI, vol. 11(11), pages 1-13, June.
    7. Turkeltaub, Tuvia & Gongadze, Kate & Lü, Yihe & Huang, Mingbin & Jia, Xiaoxu & Yang, Huiyi & Shao, Ming'an & Binley, Andrew & Harris, Paul & Wu, Lianhai, 2022. "A review of models for simulating the soil-plant interface for different climatic conditions and land uses in the Loess Plateau, China," Ecological Modelling, Elsevier, vol. 474(C).
    8. Sandhya Nepal & Mohan KC & Nabaraj Pudasaini & Hari Adhikari, 2023. "Divergent Effects of Topography on Soil Properties and Above-Ground Biomass in Nepal’s Mid-Hill Forests," Resources, MDPI, vol. 12(11), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:890-:d:836629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.