IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v264y2022ics0378377422000373.html
   My bibliography  Save this article

Assessing soil water recovery after converting planted shrubs and grass to natural grass in the northern Loess Plateau of China

Author

Listed:
  • Liu, Bingxia
  • Jia, Xiaoxu
  • Shao, Ming'an
  • Jia, Yuhua

Abstract

The Chinese Loess Plateau (CLP) is prone to adverse effects from drought, especially the widespread creation of a dried soil layer (DSL), a problem intensified by revegetation under the Grain for Green Program. Using 13-year soil moisture (SM) data, we compared soil water consumption by planted shrubs (Korshinsk peashrub, KOP), planted grass (purple alfalfa, ALF), and natural grass (NAG) from 2004 to 2016 in the CLP. To assess the soil water recovery processes, long-term (30 years) SM dynamics were simulated using the simultaneous heat and water (SHAW) model based on field data and local meteorological data under two scenarios (A: converting KOP to NAG and B: converting ALF to NAG). The results showed that the decline rates of SM in 1–4 m profiles for NAG (24.0–29.8%) were much lower than those for KOP (47.6–51.4%) and ALF (48.8–50.2%) during the 13-year growth period. Modelling SM dynamics at depths of 1–4 m for 30 years showed that SM gradually increased and that the DSL prevalence could be reduced under scenarios A and B. The complete elimination of DSL requires at least 6 years at 1–4 m under scenario A, 13 years at 2–4 m, and 22 years at 1–2 m under scenario B. Soil water restored to local stable soil water levels requires approximately 19, 13, and 15 years in the 1–2 m, 2–3 m, and 3–4 m profiles, respectively, under scenario A. Soil water recovery will take approximately 28 years in the 2–3 m profile and 27 years in the 3–4 m profile under scenario B. Our results enhance the understanding of the soil water depletion and recovery processes under different vegetation types and can could be used to provide scientific guidance for sustainable ecological restoration in the CLP.

Suggested Citation

  • Liu, Bingxia & Jia, Xiaoxu & Shao, Ming'an & Jia, Yuhua, 2022. "Assessing soil water recovery after converting planted shrubs and grass to natural grass in the northern Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:agiwat:v:264:y:2022:i:c:s0378377422000373
    DOI: 10.1016/j.agwat.2022.107490
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422000373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107490?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Bingxia & Shao, Ming’an, 2015. "Modeling soil–water dynamics and soil–water carrying capacity for vegetation on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 159(C), pages 176-184.
    2. Xiaoming Feng & Bojie Fu & Shilong Piao & Shuai Wang & Philippe Ciais & Zhenzhong Zeng & Yihe Lü & Yuan Zeng & Yue Li & Xiaohui Jiang & Bingfang Wu, 2016. "Revegetation in China’s Loess Plateau is approaching sustainable water resource limits," Nature Climate Change, Nature, vol. 6(11), pages 1019-1022, November.
    3. Huang, Mingbin & Gallichand, Jacques, 2006. "Use of the SHAW model to assess soil water recovery after apple trees in the gully region of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 67-76, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Han & Si, Bing Cheng & Zhang, Zhiqiang & Miao, Changhong, 2022. "Deep soil water storage and drainage following conversion of deep rooted to shallow rooted vegetation," Agricultural Water Management, Elsevier, vol. 261(C).
    2. Ma, Shuai & Wang, Liang-Jie & Chu, Lei & Jiang, Jiang, 2023. "Determination of ecological restoration patterns based on water security and food security in arid regions," Agricultural Water Management, Elsevier, vol. 278(C).
    3. Jian, Yuqing & Liu, Zhengjia & Gong, Jianzhou, 2022. "Response of landscape dynamics to socio-economic development and biophysical setting across the farming-pastoral ecotone of northern China and its implications for regional sustainable land management," Land Use Policy, Elsevier, vol. 122(C).
    4. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    5. Vera, Ivan & Wicke, Birka & Lamers, Patrick & Cowie, Annette & Repo, Anna & Heukels, Bas & Zumpf, Colleen & Styles, David & Parish, Esther & Cherubini, Francesco & Berndes, Göran & Jager, Henriette & , 2022. "Land use for bioenergy: Synergies and trade-offs between sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Cai, Liping & Wang, Hui & Liu, Yanxu & Fan, Donglin & Li, Xiaoxiao, 2022. "Is potential cultivated land expanding or shrinking in the dryland of China? Spatiotemporal evaluation based on remote sensing and SVM," Land Use Policy, Elsevier, vol. 112(C).
    7. Lin Dou & Mingbin Huang & Yang Hong, 2009. "Statistical Assessment of the Impact of Conservation Measures on Streamflow Responses in a Watershed of the Loess Plateau, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 1935-1949, August.
    8. Liu, Bingxia & Shao, Ming’an, 2015. "Modeling soil–water dynamics and soil–water carrying capacity for vegetation on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 159(C), pages 176-184.
    9. Li, Sijia & Wang, Jinman & Zhang, Min & Tang, Qian, 2021. "Characterizing and attributing the vegetation coverage changes in North Shanxi coal base of China from 1987 to 2020," Resources Policy, Elsevier, vol. 74(C).
    10. Wang, X.C. & Muhammad, T.N. & Hao, M.D. & Li, J., 2011. "Sustainable recovery of soil desiccation in semi-humid region on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 98(8), pages 1262-1270, May.
    11. Lu, Chengpeng & Ji, Wei & Hou, Muchen & Ma, Tianyang & Mao, Jinhuang, 2022. "Evaluation of efficiency and resilience of agricultural water resources system in the Yellow River Basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    12. Tao, Ze & Wang, Xia & Siddique, Kadambot H.M., 2023. "Evaluating the bias effects of rooting depth and cryogenic vacuum extraction to quantify root water uptake patterns in deep-rooted apple trees," Agricultural Water Management, Elsevier, vol. 289(C).
    13. Huang, Zhenyu & Zhang, Junxiao & Ren, Dongyang & Hu, Jiaqi & Xia, Guimin & Pan, Baozhu, 2022. "Modeling and assessing water and nitrogen use and crop growth of peanut in semi-arid areas of Northeast China," Agricultural Water Management, Elsevier, vol. 267(C).
    14. M. K. Dhillon & P. M. Rafi-Ul-Shan & H. Amar & F. Sher & S. Ahmed, 2023. "Flexible Green Supply Chain Management in Emerging Economies: A Systematic Literature Review," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(1), pages 1-28, March.
    15. Li, Bingbing & Biswas, Asim & Wang, Yunqiang & Li, Zhi, 2021. "Identifying the dominant effects of climate and land use change on soil water balance in deep loessial vadose zone," Agricultural Water Management, Elsevier, vol. 245(C).
    16. Saowanee Wijitkosum, 2020. "Reducing Vulnerability to Desertification by Using the Spatial Measures in a Degraded Area in Thailand," Land, MDPI, vol. 9(2), pages 1-20, February.
    17. Zhao, Xiaofang & Huang, Mingbin & Yan, Xiaoying & Yang, Yingnan, 2022. "The impacts of climate change and cropping systems on soil water recovery in the 0–1500 cm soil profile after alfalfa," Agricultural Water Management, Elsevier, vol. 272(C).
    18. Dexi Zhan & Yongqi Mu & Wenxu Duan & Mingzhu Ye & Yingqiang Song & Zhenqi Song & Kaizhong Yao & Dengkuo Sun & Ziqi Ding, 2023. "Spatial Prediction and Mapping of Soil Water Content by TPE-GBDT Model in Chinese Coastal Delta Farmland with Sentinel-2 Remote Sensing Data," Agriculture, MDPI, vol. 13(5), pages 1-19, May.
    19. Yang, Shanshan & Zhang, Jiahua & Wang, Jingwen & Zhang, Sha & Bai, Yun & Shi, Siqi & Cao, Dan, 2022. "Spatiotemporal variations of water productivity for cropland and driving factors over China during 2001–2015," Agricultural Water Management, Elsevier, vol. 262(C).
    20. Di Wang, & Wang, Li, 2023. "Characteristics of soil evaporation at two stages of growth in apple orchards with different ages in a semi-humid region," Agricultural Water Management, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:264:y:2022:i:c:s0378377422000373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.