IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip2p1532-1544.html
   My bibliography  Save this article

Renewable energy from pyrolysis using crops and agricultural residuals: An economic and environmental evaluation

Author

Listed:
  • Kung, Chih-Chun
  • Zhang, Ning

Abstract

This study examines pyrolysis-based electricity generation and ethanol production using various crops and agricultural residuals in Taiwan. It analyzes the net economic and environmental effects within the framework of the Extended Taiwanese Agricultural Sector Model by incorporating ongoing and potential gasoline, coal and GHG (greenhouse gas) prices. The study discusses the effects of agricultural shifts, which have several important implications for the Taiwanese bioenergy development. First, the cost of collecting rice straw is much lower than the production cost of other energy crops, implying that the efficient use of agricultural waste may eventually result in positive social effects in terms of farmers' revenue, the renewable energy supply and GHG emissions offset. Second, farmers with idle land usually suffer a lower steady income. Encouraging the development of the renewable energy industry increases the demand of raw feedstocks, which involves converting the idle land into cultivation and increasing farmers' revenue. Third, agricultural waste is usually burned and emits CO2, which accelerates the global climate shift. Approximately one third of emissions could be offset by rice straw-based bioenergy in certain cases. Turning this waste into bioenergy, which offsets net GHG emissions, has positive effects on the climate change mitigation.

Suggested Citation

  • Kung, Chih-Chun & Zhang, Ning, 2015. "Renewable energy from pyrolysis using crops and agricultural residuals: An economic and environmental evaluation," Energy, Elsevier, vol. 90(P2), pages 1532-1544.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:1532-1544
    DOI: 10.1016/j.energy.2015.06.114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215008701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.06.114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, P. & Ang, B.W., 2008. "Linear programming models for measuring economy-wide energy efficiency performance," Energy Policy, Elsevier, vol. 36(8), pages 2901-2906, August.
    2. Bridgwater, A. V. & Peacocke, G. V. C., 2000. "Fast pyrolysis processes for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(1), pages 1-73, March.
    3. Schaffer, Lena Maria & Bernauer, Thomas, 2014. "Explaining government choices for promoting renewable energy," Energy Policy, Elsevier, vol. 68(C), pages 15-27.
    4. Ching-Cheng Chang & Bruce A. McCarl & James W. Mjelde & James W. Richardson, 1992. "Sectoral Implications of Farm Program Modifications," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 74(1), pages 38-49.
    5. Welfle, Andrew & Gilbert, Paul & Thornley, Patricia, 2014. "Securing a bioenergy future without imports," Energy Policy, Elsevier, vol. 68(C), pages 1-14.
    6. Johannes Lehmann & John Gaunt & Marco Rondon, 2006. "Bio-char Sequestration in Terrestrial Ecosystems – A Review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 395-419, March.
    7. Keith H. Coble & Ching-Cheng Chang & Bruce A. McCarl & Bobby R. Eddleman, 1992. "Assessing Economic Implications of New Technology: The Case of Cornstarch-Based Biodegradable Plastic," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 14(1), pages 33-43.
    8. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    9. Bruce A. McCarl & Thomas H. Spreen, 1980. "Price Endogenous Mathematical Programming As a Tool for Sector Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 62(1), pages 87-102.
    10. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    11. Chang, Ching-Cheng, 2002. "The potential impact of climate change on Taiwan's agriculture," Agricultural Economics, Blackwell, vol. 27(1), pages 51-64, May.
    12. Chi‐Chung Chen & Ching‐Cheng Chang, 2005. "The impact of weather on crop yield distribution in Taiwan: some new evidence from panel data models and implications for crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 33(s3), pages 503-511, November.
    13. Johannes Lehmann, 2007. "A handful of carbon," Nature, Nature, vol. 447(7141), pages 143-144, May.
    14. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    15. Wilson, P. & Glithero, N.J. & Ramsden, S.J., 2014. "Prospects for dedicated energy crop production and attitudes towards agricultural straw use: The case of livestock farmers," Energy Policy, Elsevier, vol. 74(C), pages 101-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niu, Wenjuan & Han, Lujia & Liu, Xian & Huang, Guangqun & Chen, Longjian & Xiao, Weihua & Yang, Zengling, 2016. "Twenty-two compositional characterizations and theoretical energy potentials of extensively diversified China's crop residues," Energy, Elsevier, vol. 100(C), pages 238-250.
    2. Kung, Chih-Chun & Mu, Jianhong E., 2019. "Prospect of China's renewable energy development from pyrolysis and biochar applications under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Roy, Poritosh & Dias, Goretty, 2017. "Prospects for pyrolysis technologies in the bioenergy sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 59-69.
    4. Pan, Xuwei & Wu, Yan & Li, Tingzhen & Lan, Guoxin & Shen, Jia & Yu, Yue & Xue, Ping & Chen, Dan & Wang, Maoqing & Fu, Chuan, 2023. "A study of co-pyrolysis of sewage sludge and rice husk for syngas production based on a cyclic catalytic integrated process system," Renewable Energy, Elsevier, vol. 215(C).
    5. Anupam, Kumar & Sharma, Arvind Kumar & Lal, Priti Shivhare & Dutta, Suman & Maity, Sudip, 2016. "Preparation, characterization and optimization for upgrading Leucaena leucocephala bark to biochar fuel with high energy yielding," Energy, Elsevier, vol. 106(C), pages 743-756.
    6. Kung, Chih-Chun & Zhang, Liguo & Kong, Fanbin, 2016. "How government subsidy leads to sustainable bioenergy development," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 275-284.
    7. Kung, Chih-Chun, 2019. "A stochastic evaluation of economic and environmental effects of Taiwan's biofuel development under climate change," Energy, Elsevier, vol. 167(C), pages 1051-1064.
    8. Kung, Chih-Chun & Zhang, Ning & Choi, Yongrok & Xiong, Kai & Yu, Jiangli, 2019. "Effectiveness of crop residuals in ethanol and pyrolysis-based electricity production: A stochastic analysis under uncertain climate impacts," Energy Policy, Elsevier, vol. 125(C), pages 267-276.
    9. Mohsin Raza & Abrar Inayat & Ashfaq Ahmed & Farrukh Jamil & Chaouki Ghenai & Salman R. Naqvi & Abdallah Shanableh & Muhammad Ayoub & Ammara Waris & Young-Kwon Park, 2021. "Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing," Sustainability, MDPI, vol. 13(19), pages 1-42, October.
    10. Kung, Chih-Chun & Lan, Xiaolong & Yang, Yunxia & Kung, Shan-Shan & Chang, Meng-Shiuh, 2022. "Effects of green bonds on Taiwan's bioenergy development," Energy, Elsevier, vol. 238(PA).
    11. Kung, Chih-Chun & Wu, Tao, 2021. "Influence of water allocation on bioenergy production under climate change: A stochastic mathematical programming approach," Energy, Elsevier, vol. 231(C).
    12. Md Sumon Reza & Zhanar Baktybaevna Iskakova & Shammya Afroze & Kairat Kuterbekov & Asset Kabyshev & Kenzhebatyr Zh. Bekmyrza & Marzhan M. Kubenova & Muhammad Saifullah Abu Bakar & Abul K. Azad & Hrido, 2023. "Influence of Catalyst on the Yield and Quality of Bio-Oil for the Catalytic Pyrolysis of Biomass: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-39, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chih-Chun Kung & Meng-Shiuh Chang, 2015. "Effect of Agricultural Feedstock to Energy Conversion Rate on Bioenergy and GHG Emissions," Sustainability, MDPI, vol. 7(5), pages 1-15, May.
    2. Chih-Chun Kung & Bruce A. McCarl & Chi-Chung Chen, 2014. "An Environmental and Economic Evaluation of Pyrolysis for Energy Generation in Taiwan with Endogenous Land Greenhouse Gases Emissions," IJERPH, MDPI, vol. 11(3), pages 1-19, March.
    3. Kung, Chih-Chun & Mu, Jianhong E., 2019. "Prospect of China's renewable energy development from pyrolysis and biochar applications under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Kung, Chih-Chun & Zhang, Liguo & Kong, Fanbin, 2016. "How government subsidy leads to sustainable bioenergy development," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 275-284.
    5. Kung, Chih-Chun, 2019. "A stochastic evaluation of economic and environmental effects of Taiwan's biofuel development under climate change," Energy, Elsevier, vol. 167(C), pages 1051-1064.
    6. Meng-Shiuh CHANG & Wen WANG & Chih-Chun KUNG, 2015. "Economic effects of the biochar application on rice supply in Taiwan," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 61(6), pages 284-295.
    7. Xiaoyong CAO & Chih-Chun KUNG & Yuelong WANG, 2017. "An environmental and economic evaluation of carbon sequestration from pyrolysis and biochar application in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(12), pages 569-578.
    8. Kung, Chih-Chun & Zhang, Ning & Choi, Yongrok & Xiong, Kai & Yu, Jiangli, 2019. "Effectiveness of crop residuals in ethanol and pyrolysis-based electricity production: A stochastic analysis under uncertain climate impacts," Energy Policy, Elsevier, vol. 125(C), pages 267-276.
    9. Chih-Chun Kung & Bruce A. McCarl & Chi-Chung Chen & Xiaoyong Cao, 2014. "Environmental Impact and Energy Production: Evaluation of Biochar Application on Taiwanese Set-Aside Land," Energy & Environment, , vol. 25(1), pages 13-39, February.
    10. Kung, Chih-Chun & Lan, Xiaolong & Yang, Yunxia & Kung, Shan-Shan & Chang, Meng-Shiuh, 2022. "Effects of green bonds on Taiwan's bioenergy development," Energy, Elsevier, vol. 238(PA).
    11. Chih-Chun Kung & Hualin Xie & Tao Wu & Shih-Chih Chen, 2014. "Biofuel for Energy Security: An Examination on Pyrolysis Systems with Emissions from Fertilizer and Land-Use Change," Sustainability, MDPI, vol. 6(2), pages 1-18, January.
    12. Kung, Chih-Chun & Wu, Tao, 2021. "Influence of water allocation on bioenergy production under climate change: A stochastic mathematical programming approach," Energy, Elsevier, vol. 231(C).
    13. Kung, Chih-Chun & Cao, Xiaoyong & Choi, Yongrok & Kung, Shan-Shan, 2019. "A stochastic analysis of cropland utilization and resource allocation under climate change," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    14. Chih-Chun KUNG, 2018. "A dynamic framework of sustainable development in agriculture and bioenergy," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(10), pages 445-455.
    15. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    16. Meng-Shiuh Chang & Chih-Chun Kung, 2018. "The greenhouse gas impact of bioenergy in developing economies: Evidence from Taiwan," Energy & Environment, , vol. 29(3), pages 315-332, May.
    17. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    18. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    19. Ching-Cheng Chang, 1999. "Carbon sequestration cost by afforestation in Taiwan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 2(3), pages 199-213, September.
    20. Callaway, J.M., 2000. "Assessing the Costs and Market Impacts of Carbon Sequestration, Climate Change and Acid Rain," Other publications TiSEM c58adec9-1535-46cf-b213-b, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:1532-1544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.