IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i8p1255-d1446045.html
   My bibliography  Save this article

Responses of Soil Enzymes Activities to Sprinkler Irrigation and Differentiated Nitrogen Fertilization in Barley Cultivation

Author

Listed:
  • Anetta Siwik-Ziomek

    (Laboratory of Soil Science and Biochemistry, Department of Biogeochemistry and Soil Science, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Sciences and Technology, 6 Bernardyńska Street, 85-029 Bydgoszcz, Poland)

  • Renata Kuśmierek-Tomaszewska

    (Laboratory of Agrometeorology, Plant Irrigation and Drainage, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Sciences and Technology, 7 Profesora Sylwestra Kaliskiego Av., 85-796 Bydgoszcz, Poland)

Abstract

Our study aimed to assess the impact of sprinkler irrigation on the activity of selected soil enzymes in terms of nitrogen metabolism and oxidation–reduction processes in soil with different doses of inorganic nitrogen fertilizers. An Alfisol was sampled from an experimental field of spring barley within the University Research Center in the central part of Poland, namely the village of Mochełek with a moderate transitory climate, during the growing seasons of 2015–2017. The soil resistance (RS) was derived to recognize the resistance enzymes during drought. In the maturity phase, nitrate reductase activity was 18% higher in irrigated soil and the activities of other enzymes were higher than in the non-irrigated plots by 25% for dehydrogenase, 22% for peroxidase, 33% for catalase, and 17% for urease. The development phase in the barley influenced nitrate reductase activity. Enzymatic activities changed throughout the research years. During the maturity stage, a lower ammonium nitrogen content in the soil resulted from a higher spring barley uptake due to drought stress. Irrigation probably contributed to increased leaching of nitrate in the soil. The highest index of resilience was found in the soil catalase activity.

Suggested Citation

  • Anetta Siwik-Ziomek & Renata Kuśmierek-Tomaszewska, 2024. "Responses of Soil Enzymes Activities to Sprinkler Irrigation and Differentiated Nitrogen Fertilization in Barley Cultivation," Agriculture, MDPI, vol. 14(8), pages 1-16, July.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1255-:d:1446045
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/8/1255/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/8/1255/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang, Qiong & Gao, Rutai & Xi, Beidou & Zhang, Yuan & Zhang, Hui, 2014. "Long-term effects of irrigation using water from the river receiving treated industrial wastewater on soil organic carbon fractions and enzyme activities," Agricultural Water Management, Elsevier, vol. 135(C), pages 100-108.
    2. Jia, Xucun & Shao, Lijie & Liu, Peng & Zhao, Bingqiang & Gu, Limin & Dong, Shuting & Bing, So Hwat & Zhang, Jiwang & Zhao, Bin, 2014. "Effect of different nitrogen and irrigation treatments on yield and nitrate leaching of summer maize (Zea mays L.) under lysimeter conditions," Agricultural Water Management, Elsevier, vol. 137(C), pages 92-103.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianxin Li & Linglong Meng & Uwizeyimana Herman & Zhongming Lu & John Crittenden, 2015. "A Survey of Soil Enzyme Activities along Major Roads in Beijing: The Implications for Traffic Corridor Green Space Management," IJERPH, MDPI, vol. 12(10), pages 1-14, October.
    2. Chilundo, Mario & Joel, Abraham & Wesström, Ingrid & Brito, Rui & Messing, Ingmar, 2018. "Influence of irrigation and fertilisation management on the seasonal distribution of water and nitrogen in a semi-arid loamy sandy soil," Agricultural Water Management, Elsevier, vol. 199(C), pages 120-137.
    3. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    4. Honghong Ma & Tao Yang & Xinxiang Niu & Zhenan Hou & Xingwang Ma, 2021. "Sound Water and Nitrogen Management Decreases Nitrogen Losses from a Drip-Fertigated Cotton Field in Northwestern China," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
    5. Haghnazari, Farzad & Karandish, Fatemeh & Darzi-Naftchali, Abdullah & Šimůnek, Jiří, 2020. "Dynamic assessment of the impacts of global warming on nitrate losses from a subsurface-drained rainfed-canola field," Agricultural Water Management, Elsevier, vol. 242(C).
    6. Yan, Fulai & Zhang, Fucang & Fan, Xingke & Fan, Junliang & Wang, Ying & Zou, Haiyang & Wang, Haidong & Li, Guodong, 2021. "Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of drip-fertigated spring maize in northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India," Energy, Elsevier, vol. 174(C), pages 269-279.
    8. Libutti, Angela & Monteleone, Massimo, 2017. "Soil vs. groundwater: The quality dilemma. Managing nitrogen leaching and salinity control under irrigated agriculture in Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 186(C), pages 40-50.
    9. Dong, Qiang & Dang, Tinghui & Guo, Shengli & Hao, Mingde, 2019. "Effect of different mulching measures on nitrate nitrogen leaching in spring maize planting system in south of Loess Plateau," Agricultural Water Management, Elsevier, vol. 213(C), pages 654-658.
    10. Liu, Jing & Bi, Xiaoqing & Ma, Maoting & Jiang, Lihua & Du, Lianfeng & Li, Shunjiang & Sun, Qinping & Zou, Guoyuan & Liu, Hongbin, 2019. "Precipitation and irrigation dominate soil water leaching in cropland in Northern China," Agricultural Water Management, Elsevier, vol. 211(C), pages 165-171.
    11. Dong, Qiang & Dang, Tinghui & Guo, Shengli & Hao, Mingde, 2019. "Effects of mulching measures on soil moisture and N leaching potential in a spring maize planting system in the southern Loess Plateau," Agricultural Water Management, Elsevier, vol. 213(C), pages 803-808.
    12. Javier Martínez-Dalmau & Julio Berbel & Rafaela Ordóñez-Fernández, 2021. "Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    13. Wang, Shiquan & Xiong, Jinran & Yang, Boyuan & Yang, Xiaolin & Du, Taisheng & Steenhuis, Tammo S. & Siddique, Kadambot H.M. & Kang, Shaozhong, 2023. "Diversified crop rotations reduce groundwater use and enhance system resilience," Agricultural Water Management, Elsevier, vol. 276(C).
    14. Lu, Junsheng & Hu, Tiantian & Zhang, Baocheng & Wang, Li & Yang, Shuohuan & Fan, Junliang & Yan, Shicheng & Zhang, Fucang, 2021. "Nitrogen fertilizer management effects on soil nitrate leaching, grain yield and economic benefit of summer maize in Northwest China," Agricultural Water Management, Elsevier, vol. 247(C).
    15. Ma, Chao & Wang, Jun & Li, Jiusheng, 2023. "Utilization of soil and fertilizer nitrogen supply under mulched drip irrigation with various water qualities in arid regions," Agricultural Water Management, Elsevier, vol. 280(C).
    16. Bhunia, Snehasish & Karmakar, Subrata & Bhattacharjee, Suvendu & Roy, Kingshuk & Kanthal, Sahely & Pramanick, Mahadev & Baishya, Aniket & Mandal, Biswapati, 2021. "Optimization of energy consumption using data envelopment analysis (DEA) in rice-wheat-green gram cropping system under conservation tillage practices," Energy, Elsevier, vol. 236(C).
    17. Sang-Hwan Lee & Min-Suk Kim & Jeong-Gyu Kim & Soon-Oh Kim, 2020. "Use of Soil Enzymes as Indicators for Contaminated Soil Monitoring and Sustainable Management," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    18. Lai, Zhenlin & Fan, Junliang & Yang, Rui & Xu, Xinyu & Liu, Lanjiao & Li, Sien & Zhang, Fucang & Li, Zhijun, 2022. "Interactive effects of plant density and nitrogen rate on grain yield, economic benefit, water productivity and nitrogen use efficiency of drip-fertigated maize in northwest China," Agricultural Water Management, Elsevier, vol. 263(C).
    19. Li, Guanghao & Zhao, Bin & Dong, Shuting & Zhang, Jiwang & Liu, Peng & Lu, Weiping, 2020. "Controlled-release urea combining with optimal irrigation improved grain yield, nitrogen uptake, and growth of maize," Agricultural Water Management, Elsevier, vol. 227(C).
    20. Chilundo, Mario & Joel, Abraham & Wesström, Ingrid & Brito, Rui & Messing, Ingmar, 2016. "Effects of reduced irrigation dose and slow release fertiliser on nitrogen use efficiency and crop yield in a semi-arid loamy sand," Agricultural Water Management, Elsevier, vol. 168(C), pages 68-77.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1255-:d:1446045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.