IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v130y2013icp52-60.html
   My bibliography  Save this article

Nitrate loss in subsurface drainage and corn yield as affected by timing of sidedress nitrogen

Author

Listed:
  • Jaynes, D.B.

Abstract

Using chlorophyll meters, crop sensors, or aerial photography to fine-tune sidedress N application rates have been proposed for optimizing and perhaps reducing overall N fertilizer use on corn (Zea mays L.) and thereby improving water quality by reducing NO3 losses to surface and ground waters. However, numerous studies have shown that a range of sensors are unable to detect nitrogen deficiencies until at least the middle of and often late in the growing season. Sidedressing N early in the growing season has proven to be a sound strategy for optimizing yields and minimizing nitrate losses in tile drains. However, delaying sidedressing until mid-season (just before reproductive growth) has been shown to negate much of the yield and nitrate leaching loss benefits. For four years in an Iowa production field (2006–2009), we measured the crop yield and nitrate leaching losses to subsurface drain pipes in a corn–soybean [Glycine max (L.) Merr.] rotation when N fertilizer was sidedressed to corn at three different crop development stages. The first treatment had all of the N fertilizer applied when the corn was at the 2 leaf stage (V2). The other two treatments split the N fertilizer application equally between the V2 stage and when six corn leaves were fully extended (V6) or when 12 corn leaves were fully extended (V12). Waiting until the V12 stage to sidedress the remaining N is a compromise between when plant sensors may be sensitive to N deficiencies and when sidedressing may still provide a water quality benefit without a detrimental impact on corn yield. We found no consistent yield differences for corn among the three treatments with significantly decreasing corn yields in the order of V12>V2>V6 in 2008 but no differences in 2006 or when averaged over both years. Similarly, none of the N treatments affected soybean yields grown the following year. When averaged over all years, there were no significant differences in nitrate concentration or leaching losses in subsurface drains among the treatments. Thus, if crop sensors can provide N rate information for sidedressing by the V12 growth stage, optimization of N fertilizer rates for crop yield and minimization of nitrate leaching may be possible.

Suggested Citation

  • Jaynes, D.B., 2013. "Nitrate loss in subsurface drainage and corn yield as affected by timing of sidedress nitrogen," Agricultural Water Management, Elsevier, vol. 130(C), pages 52-60.
  • Handle: RePEc:eee:agiwat:v:130:y:2013:i:c:p:52-60
    DOI: 10.1016/j.agwat.2013.08.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377413002199
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2013.08.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ribaudo, Marc & Delgado, Jorge & Hansen, LeRoy T. & Livingston, Michael J. & Mosheim, Roberto & Williamson, James M., 2011. "Nitrogen in Agricultural Systems: Implications for Conservation Policy," Economic Research Report 118022, United States Department of Agriculture, Economic Research Service.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matinzadeh, Mohammad Mehdi & Abedi Koupai, Jahangir & Sadeghi-Lari, Adnan & Nozari, Hamed & Shayannejad, Mohammad, 2017. "Development of an innovative integrated model for the simulation of nitrogen dynamics in farmlands with drainage systems using the system dynamics approach," Ecological Modelling, Elsevier, vol. 347(C), pages 11-28.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew Houser, 2022. "Does adopting a nitrogen best management practice reduce nitrogen fertilizer rates?," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(1), pages 79-94, March.
    2. Sadowski, Arkadiusz & Wojcieszak-Zbierska, Monika Małgorzata & Zmyślona, Jagoda, 2024. "Agricultural production in the least developed countries and its impact on emission of greenhouse gases – An energy approach," Land Use Policy, Elsevier, vol. 136(C).
    3. Rose A Graves & Ryan D Haugo & Andrés Holz & Max Nielsen-Pincus & Aaron Jones & Bryce Kellogg & Cathy Macdonald & Kenneth Popper & Michael Schindel, 2020. "Potential greenhouse gas reductions from Natural Climate Solutions in Oregon, USA," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-30, April.
    4. Morten Graversgaard & Beatrice Hedelin & Laurence Smith & Flemming Gertz & Anker Lajer Højberg & John Langford & Grit Martinez & Erik Mostert & Emilia Ptak & Heidi Peterson & Nico Stelljes & Cors Van , 2018. "Opportunities and Barriers for Water Co-Governance—A Critical Analysis of Seven Cases of Diffuse Water Pollution from Agriculture in Europe, Australia and North America," Sustainability, MDPI, vol. 10(5), pages 1-39, May.
    5. Singh, Simratpal & Coppi, Luca & Wang, Zijian & Tenuta, Mario & Holländer, Hartmut M., 2019. "Regionalisation of nitrate leaching on pasture land in Southern Manitoba," Agricultural Water Management, Elsevier, vol. 222(C), pages 286-300.
    6. Hardeep Singh & Brian K. Northup & Gurjinder S. Baath & Prashanth P. Gowda & Vijaya G. Kakani, 2020. "Greenhouse mitigation strategies for agronomic and grazing lands of the US Southern Great Plains," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 819-853, May.
    7. Athanasios Balafoutis & Bert Beck & Spyros Fountas & Jurgen Vangeyte & Tamme Van der Wal & Iria Soto & Manuel Gómez-Barbero & Andrew Barnes & Vera Eory, 2017. "Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics," Sustainability, MDPI, vol. 9(8), pages 1-28, July.
    8. Stuart, D. & Denny, R.C.H. & Houser, M. & Reimer, A.P. & Marquart-Pyatt, S., 2018. "Farmer selection of sources of information for nitrogen management in the US Midwest: Implications for environmental programs," Land Use Policy, Elsevier, vol. 70(C), pages 289-297.
    9. Buzby, Jean C. & Farah-Wells, Hodan & Hyman, Jeffrey, 2014. "The Estimated Amount, Value, and Calories of Postharvest Food Losses at the Retail and Consumer Levels in the United States," Economic Information Bulletin 164262, United States Department of Agriculture, Economic Research Service.
    10. Wang, Jingjing, 2022. "Harnessing natural attenuation to reduce CAFOs nitrate emissions: An integrated modeling approach," Ecological Economics, Elsevier, vol. 199(C).
    11. Moon, Jin-Young & Apland, Jeffrey & Folle, Solomon & Mulla, David J., 2012. "Environmental Impacts of Cellulosic Feedstock Production: A Case Study of a Cornbelt Aquifer," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 125016, Agricultural and Applied Economics Association.
    12. Agarwal, Sandip & Jacobs, Keri L. & Weninger, Quinn, 2016. "Unfolding the Bias in Farm Nitrogen Management," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 237380, Agricultural and Applied Economics Association.
    13. Matthew Houser & Ryan Gunderson & Diana Stuart & Riva C. H. Denny, 2020. "How farmers “repair” the industrial agricultural system," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 37(4), pages 983-997, December.
    14. Springborn, Michael & Yeo, Boon-Ling & Lee, Juhwan & Six, Johan, 2013. "Crediting uncertain ecosystem services in a market," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 554-572.
    15. Ali, Sarah & McCann, Laura M.J. & Allspach, Jessica, 2012. "Manure Transfers in the Midwest and Factors Affecting Adoption of Manure Testing," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 44(4), pages 1-16, November.
    16. Konstantinos Metaxoglou & Aaron Smith, 2022. "Nutrient Pollution and US Agriculture: Causal Effects, Integrated Assessment, and Implications of Climate Change," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 297-341, National Bureau of Economic Research, Inc.
    17. McCann, Laura, 2013. "Transaction costs and environmental policy design," Ecological Economics, Elsevier, vol. 88(C), pages 253-262.
    18. Gwon-Soo Bahn & Byung-Chul An, 2020. "Analysis of Environmental Purification Effect of Riparian Forest with Poplar Trees for Ecological Watershed Management: A Case Study in the Floodplain of the Dam Reservoir in Korea," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    19. Hardeep Singh & Brian K. Northup & Gurjinder S. Baath & Prashanth P. Gowda & Vijaya G. Kakani, 0. "Greenhouse mitigation strategies for agronomic and grazing lands of the US Southern Great Plains," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 819-853.
    20. Wade, Tara & Claassen, Roger & Wallander, Steven, 2015. "Conservation-Practice Adoption Rates Vary Widely by Crop and Region," Economic Information Bulletin 262111, United States Department of Agriculture, Economic Research Service.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:130:y:2013:i:c:p:52-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.